BioScience Trends. 2011;5(5):189-191. (DOI: 10.5582/bst.2011.v5.5.189)

Implications of integrase inhibitors for HIV-infected transplantation recipients: Raltegravir and dolutegravir (S/GSK 1349572).

Waki K, Sugawara Y


In the modern era of highly active antiretroviral therapy (HAART), reluctance to perform transplantation (Tx) in HIV-infected individuals is no longer justified. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) or protease inhibitors (PIs), the current first line regimens of HAART, are metabolized by the cytochrome P450 family (CYP3A4). Most NNRTIs induce CYP3A4, whereas PIs inhibit it. Calcinuerin inhibitors (CNIs), which are mandatory for Tx, need the same enzyme complex for their clearance. Therefore, a significant drug-drug interaction (DDI) is encountered between current HAART and CNIs. This results in extreme difficulty in adjusting the optimal dose of CNIs, for which the therapeutic range is narrow. Of interest, integrase inhibitors (INIs) – novel, potent anti-HIV drugs – are mainly metabolized by uridine diphosphate glucuronosyltransferase (UGT) 1A1 and do not induce or inhibit CYP3A4. DDI is presumably absent when NNTRIs or PIs are replaced by INIs. Raltegravir (RAL), a first generation INI, has been introduced into kidney and liver Tx. There is increasing evidence that rejection is well controlled without renal impairment due to CNI over-exposure while persistent, robust suppression of HIV is achieved. Global phase III clinical trials of dolutegravir (DTG), a second generation INI, are currently in progress. In vitro data has suggested that DTG may be less prone to resistance than RAL (referred to as having a higher genetic barrier). The time has come to extensively discuss the implications of INIs in Tx for HIV positive patients.

KEYWORDS: Liver transplantation, kidney transplantation, drug-drug interaction (DDI), highly active antiretroviral therapy (HAART)

Full Text: