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Combating syphilis resurgence: China's multifaceted approach

Rongfeng Zhou1, Kai Sun2, Ting Li1, Hongzhou Lu3,4,*

1 Hospital administrative office, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, 
Guangdong, China; 

2 Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
3 Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second 

Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China;
4 National Clinical Research Center for Infectious Disease, Shenzhen, Guangdong, China.

1. Syphilis sweeping the world

Syphilis, a chronic systemic sexually transmitted 
infections(STIs) caused by Treponema pallidum, is 
on the rise globally and poses a major public health 
concern. It affects multiple organs and systems. 
Recently, the syphilis dilemma in countries such as the 
United States, Japan, and the European Union has been 
reported exhibiting a escalating trend. The United States 
reported 210,000 cases in 2023 (1), and Japan is facing 
a "once in fifty years" syphilis epidemic, which mainly 
involves heterosexual men, Unexpectedly, the number 
of cases of primary and secondary syphilis has increased 
significantly in young women. Japan's Ministry of Health 
has regarded the disease as a public health threat and has 
strengthened its preventive measures for young women 
(2). The state quo of the syphilis situation in China is not 
optimistic. Still, thanks to comprehensive syphilis control 
measures, such as a syphilis recording system and 
management strategies that combine traditional Chinese 
medicine with modern medicine, the National Syphilis 
Control Program (NSCP), launched in 2010, has played 
a crucial role. As a result, by 2020, the incidence rate of 

early syphilis has dropped significantly from 21.1 cases 
per 100,000 people to 8.8 cases. Guangdong Province, a 
province located at southern China, where syphilis was 
first recorded in China (contained in the Compendium of 
Materia Medica), has taken effective measures to reduce 
congenital syphilis. The reported sexual syphilis rate 
has dropped from 128.55 to 5.76 cases per 100,000 live 
births (3).

2. A scary upward trend

The global incidence of syphilis is on the rise, presenting 
a significant public health challenge. Figure 1 provides 
a detailed view of the syphilis prevalence, measured as 
cases per 10,000 individuals, across several countries 
from 2018 to 2023. The United States has the highest 
rates among the listed countries, with a substantial 
increase from 34.82 per 10,000 in 2018 to 61.55 in 2023, 
highlighting a severe and growing syphilis epidemic (4). 
China has seen a general increase in syphilis prevalence, 
starting at 38.19 per 10,000 in 2018, reaching a high 
of 41.73 in 2019, and then stabilizing around 37.61 
in 2023 (5). Australia's syphilis rates have fluctuated, 

DOI: 10.5582/bst.2024.01382

SUMMARY: Syphilis, a chronic infection caused by Treponema pallidum, is experiencing a global resurgence, posing 
significant public health challenges. This study examined the escalating trends of syphilis in the United States, China, 
and some other countries highlighting the impact of the COVID-19 pandemic, changes in sexual behavior, coinfection 
with the other infectious diseases such as AIDs, and the role of public health funding. The analysis revealed a stark 
increase in syphilis cases, particularly among high-risk groups such as men who have sex with men (MSM). China's 
National Syphilis Control Program (NSCP), initiated in 2010, is a comprehensive approach to syphilis management 
that incorporates health education, access to testing and treatment, partner notification, safe sex promotion, community 
interventions, and stigma reduction. The success of the NSCP in reducing early syphilis incidence rates and congenital 
syphilis in Guangdong Province, that may be served as a model for international syphilis control efforts. This study 
highlights the necessity for targeted public health interventions and the importance of robust healthcare infrastructure in 
combating the syphilis epidemic.

Keywords: syphilis, global resurgence, social determinations of health (SDoH), the National Syphilis Control Program 
(NSCP), China's syphilis management
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beginning at 28.93 per 10,000 in 2018, peaking at 32.81 
in 2019, and then slightly decreasing to 32.74 in 2023 
(6). The United Kingdom's data indicates a moderate rise 
in syphilis prevalence, from 12.56 per 10,000 in 2018 
to 13.96 in 2023 (7). Japan has experienced a notable 
increase, with syphilis rates growing from 5.53 per 
10,000 in 2018 to 14.96 in 2023, which is approximately 
a 2.7-fold increase, indicating a significant upward trend 
(6). The European Union has shown a steady rise in 
syphilis rates, from 5.77 per 10,000 in 2018 to 9.08 in 
2023 (8). 

3. The resurgence of syphilis from the perspective of 
social determinations of health (SDoH)

A variety of factors cause the resurgence of syphilis, 
which is more obvious in high-risk groups such as 
MSM (9). The factors affecting the population can be 
summarized according to the social determinants of 
health (SDoH) model as follows: 
	 1). Changes in health behaviors:  As online 
interaction methods have become more popular, the 
incidence of casual sexual encounters facilitated by 
digital platforms has surged. This trend may contribute 
to enhancing syphilis transmission rates, consequently 
broadening the spread of the disease and increasing the 
number of vulnerable individuals (10). The adoption of 
pre-exposure prophylaxis (PrEP) has been associated 
with an uptick in cases of unprotected anal intercourse, 
consequently fueling a surge in syphilis diagnoses (11). 
This enhancement poses heightened risk of exposure and 

infection, particularly in several at-risk communities.
	 2). Improved health awareness and diagnostic 
techniques: It will lead to an increase in the self-detection 
rate of more suspected infected people and is more likely 
to lead to an increase in the reporting and identification 
of confirmed syphilis cases (12).
	 3). The comprehensive impacts of COVID-19 
pandemic: On the one hand, during lockdown periods, 
diminished social interactions and sexual activities 
among at-risk populations might curtail syphilis 
proliferation, causing a downturn. However, on the other 
hand, the pandemic prompted a reallocation of healthcare 
resources, diminishing syphilis detection and patients' 
access to diagnostic and therapeutic services. This 
reduction in early case identification and intervention 
opportunities might fuel syphilis transmission. 
Conversely, congenital syphilis cases experienced an 
increase throughout the pandemic, with an upswing 
in vertical transmission. Post-pandemic, heightened 
economic and social strain may elevate population stress 
and alter relational dynamics, potentially inciting more 
hazardous sexual practices (13).
	 4). Diminution in Public Health Financing: Recently, 
the predominant allocation of public health budgets to 
combat the COVID-19 crisis may have sidetracked the 
populace's focus on STIs prevention and management. 
This reorientation of priorities could have resulted in a 
surge in syphilis cases (14).
	 5). Historical and modern environmental impacts: 
Historically, individuals with syphilis have been 
stigmatized as immoral, with artistic depictions from the 

(141)

Figure 1. Progressive syphilis trends across nations: A comparative analysis.
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4.2. Interpersonal Level

	 1). Partner Notification and Counseling: Within 
the framework of NSCP, proactive contact tracing is 
implemented to reach out to and offer screening and 
medical intervention to the intimate partners of those 
identified with syphilis, ensuring a comprehensive 
approach to the disease management.
	 2). Safe Sex Promotion: The NSCP actively 
encourages the use of condoms and advocates for safe 
sexual behaviors as a preventive measure.

4.3. Community Level

	 1). Community Engagement Initiatives: The NSCP 
bolsters grassroots efforts, including peer-led educational 
campaigns and community-driven health seminars, to 
involve local populations in the collective fight against 
syphilis.
	 2). Combating Stigma: As integral part of NSCP, 
they focus on mitigating the social stigma surrounding 
syphilis. This is aimed at creating an environment in 
which individuals feel empowered to access testing and 
treatment services without the dread of being subjected 
to prejudice or discrimination.

4.4. Societal Level

	 1). Policy and Healthcare Infrastructure: The NSCP 
bolsters management of syphilis through a robust policy 
framework, including mandatory case reporting and 
standardized STIs protocols. It also enhances the national 
healthcare system by expanding access to comprehensive 
STIs services, training medical staff, and upgrading 
diagnostic facilities.
	 2). Epidemiological Surveillance and Information 
Gathering: Central to NSCP is a sophisticated system 
for monitoring and data collection that is instrumental 
in tracking the spread of syphilis. This system is crucial 
for appraising the efficacy of control strategies and for 
guiding decisions regarding policy formulation and 
resource allocation.

4.5. Environmental Level

	 1). Media Outreach Initiatives: NSCP employs mass 
media channels to disseminate critical information on 
syphilis prevention and the significance of regular testing 
to a wide audience.
	 2). Educational Curriculum Integration: NSCP 
conducts sexual health education within the school 
system's curricula, aiming to instill a solid understanding 
of sexual health in the younger demographic and to 
cultivate a positive disposition toward it from an early 
age.
	 The resurgence of syphilis, often accompanied by 
HIV coinfection, poses a significant challenge to public 

renaissance through the 18th century mirroring societal 
alarm towards the disease, categorizing it as a 'social 
affliction' (15). In the contemporary era, the rise of 
the adult entertainment sector has exposed performers 
to significant health jeopardy (16). The reluctance to 
consistently employ condoms has fueled the spread of 
STIs, and the proliferation of pornography has reshaped 
sexual norms, indirectly contributing to syphilis 
dissemination (17).
	 6). Interplay with Other Ailments: The coinfection of 
syphilis with HIV is a significant consequence, given that 
those living with HIV are at an elevated risk for syphilis. 
Additionally, an increase in syphilis has been observed 
among premenopausal women and in cases of congenital 
syphilis (2).

4. Lessons from China's Syphilis Management

Observing the data presented in Figure 1, it is notable 
that despite its substantial population, China has 
managed to sustain a declining trajectory in syphilis 
cases. The National Syphilis Control Program (NSCP), 
initiated in 2010, aims to manage syphilis via various 
levels of the Social-Ecological Model (SEM) (18) 
(Figure 2). Thus, prevention of syphilis can be divided 
into several levels:

4.1. Individual Level

	 1). Health Education and Awareness: NSCP 
encompasses extensive public outreach efforts aimed at 
enlightening the citizenry on syphilis, detailing its modes 
of transmission, and promoting preventive strategies.
	 2). Access to Testing and Treatment: Upon the 
roles of NSCP, there is a commitment to provide the 
populace with affordable access to syphilis screening and 
therapeutic interventions, pivotal for timely identification 
and medical care.

Figure 2. Syphilis control hierarchical: Integrating NSCP through 
social-ecological model (SEM).
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health. This intersection complicates treatment and 
increases transmission risks, highlighting the need for 
a comprehensive approach to syphilis management, 
including HIV coinfection (19). The NSCP addresses 
these issues, and the government has further efforts 
with the "Action Plan for Eliminating Mother-to-Child 
Transmission of HIV, Syphilis, and Hepatitis B (2022-
2025) (20)", demonstrating a strategic commitment to 
tackling these intertwined epidemics.

5. Conclusions

The global syphilis resurgence highlights a critical public 
health challenge, with notable increases in countries 
such as the US, and Japan. China's National Syphilis 
Control Program (NSCP) has effectively mitigated this 
trend. NSCP serves as a model for addressing syphilis, 
emphasizing the importance of a multifaceted approach 
to controlling and preventing syphilis.

Funding: This work was supported by the Shenzhen 
Third People's Hospital project (No. 21250G1001 and 
No. 22240G1005).
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1. Introduction

Alzheimer's disease (AD) is the most prevalent form 
of dementia, accounting for 60-70% of all cases 
worldwide (1). As a progressive neurodegenerative 
condition, it clinically manifests as cognitive decline, 
behavioral disturbances, and impaired activities of 
daily living (2). Pathologically, it is characterized by 
extracellular deposition of β-amyloid (Aβ) plaques, 
intracellular neurofibrillary tangles consisting of 
hyperphosphorylated tau protein, synaptic dysfunction, 
and neuroinflammation (3). According to the World 
Alzheimer Report 2023, over 55 million people 
globally are living with dementia, and this number is 
projected to exceed 139 million by 2050 (1). In China, 
the prevalence of AD is increasing rapidly due to aging 
of the population and it affects more than 10 million 
individuals, making it one of the most burdensome 
chronic neurological diseases in the country (4).
	 Despite continuous progress in drug development, 
current treatments for AD remain largely symptomatic, 
aiming to temporarily improve cognition or delay 
decline. Cholinesterase inhibitors and NMDA receptor 
antagonists are commonly used, but they have limited 
impact on disease progression (5). Recently, the 
exploration of disease-modifying therapies has shifted 
attention to pathological mechanisms such as impaired 

clearance of brain-derived metabolic waste, and 
particularly Aβ and tau aggregates.
	 Stem cell-based therapies have shown promise 
in preclinical studies by modulating inflammation, 
enhancing neuroprotection, and promoting neurogenesis 
(6). In China, policy support for stem cell and exosome-
based treatment of neurological diseases is growing. 
Notably, on March 22, 2025, during the Boao Lecheng 
Stem Cell Conference, Chinese regulatory authorities 
announced for the first time the official pathways 
for approval, pricing, admission criteria, and clinical 
translation of stem cells projects. Several innovative 
therapies were granted pilot application status. However, 
stem cell-based interventions for AD remain in the 
clinical trial stage and have yet to enter routine clinical 
practice (2).
	 In this context, a novel microsurgical approach 
known as deep cervical lymphaticovenous anastomosis 
(LVA) has garnered increasing attention in China. This 
technique aims to enhance the clearance of cerebrospinal 
fluid (CSF) and interstitial fluid (ISF) by reconstructing 
a drainage route between the meningeal lymphatics and 
venous system (7). Several clinical centers, including 
those in Hangzhou, Shanghai, Nanjing, Harbin, 
Zhengzhou, and Zunyi, have launched exploratory 
studies using LVA in patients with AD (Table 1) (8-13). 
Preliminary results suggest potential improvements in 
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as a potential therapeutic strategy for AD. Preliminary findings from exploratory studies in China indicate possible 
cognitive and biomarker improvements, but current evidence is limited by small sample sizes, non-randomized 
designs, and methodological variability. Without standardized protocols and rigorous clinical validation, the broader 
applicability of LVA remains uncertain. Further investigation through multicenter, controlled trials is essential to 
objectively assessing its safety, efficacy, and clinical relevance in the management of AD.
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cognition, imaging biomarkers, and metabolic clearance 
efficiency (14). While preliminary clinical findings 
from China are intriguing, the field now stands at a 
critical juncture: will LVA mark a paradigm shift in AD 
treatment, or have we gotten ahead of the evidence?

2. Anatomical basis and therapeutic mechanism of 
LVA

The clearance of intracranial metabolic waste has long 
been a central issue in understanding the pathogenesis 
of AD (15). Traditionally, the central nervous system 
was believed to lack a conventional lymphatic system, 
with metabolic waste being primarily eliminated through 
arachnoid granulations into the venous circulation (16). 
However, recent studies have noted the presence of 
specialized lymphatic structures in the meninges, known 
as meningeal lymphatic vessels (MLVs), which connect 
with the deep cervical lymph nodes (dcLNs) (17,18). 
This discovery provides anatomical evidence supporting 
the drainage of CSF and ISF from the brain (Figure 1).
	 Imaging data suggest that CSF efflux via perisinusal 
and paravascular meningeal lymphatic pathways may 
be significantly greater ‒ potentially up to 180% ‒ 
than drainage through basal dural lymphatic routes 
(19). Approximately 50% of CSF clearance is believed 
to occur through cervical lymphatic drainage into 
the cervical lymph nodes (18,20,21). The remaining 
CSF is routed through the spinal cord to mediastinal, 
iliac, and sacral lymph nodes (22,23), or drains via 
perivascular spaces (21). Toxic molecules including 
Aβ, hyperphosphorylated tau, inflammatory mediators, 
and other metabolic byproducts are transported out 
of the brain through these lymphatic channels (17,24-
26). When the meningeal lymphatic system is impaired 
or obstructed, clearance efficiency declines, resulting 
in the accumulation of neurotoxic waste in the brain, 
activation of neuroinflammation, and the progression of 
neurodegeneration (27). These processes may play a key 
role in the pathogenesis and exacerbation of AD (26,28).
	 LVA has been proposed as a surgical intervention 
grounded in the clearance pathway hypothesis mentioned 
earlier. Using microsurgical techniques, LVA establishes 
an anastomosis between downstream lymphatic structures 
‒ such as deep cervical lymphatic vessels or nodes ‒ 
and adjacent venous branches (e.g., the internal jugular 
vein, IJV) to create a low-resistance drainage route, 
thereby enhancing the efflux of brain-derived metabolic 
waste (7,29). Intraoperatively, sodium fluorescein or 
indocyanine green (ICG) is often used in lymphatic 
mapping to assist in identifying functional lymphatic 
vessels (30). Under a high-magnification microsurgical 
field, lymphaticovenous anastomoses are typically 
performed using vessels with diameters between 0.5-
0.8 mm (14). The most commonly employed techniques 
include end-to-side and end-to-end anastomoses, both 
of which are designed to minimize venous reflux and 
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MLV functionality (26).
	 In an animal model of AD, reduced MLV function 
is directly associated with increased Aβ accumulation 
in the cortex and hippocampus, leading to neuronal 
damage and cognitive impairment (33). The decline 
in MLV function not only impairs the clearance 
of Aβ and other metabolic waste but also triggers 
neuroinflammatory responses. Studies have shown that 
during the progression of AD, VEGF-C expression 
in meningeal tissues declines significantly, leading to 
impaired lymphangiogenesis, reduced Aβ clearance 
capacity, and localized neurotoxic inflammation (33). 
Treatment with exogenous VEGF-C has been shown 
to improve Aβ clearance by over 40%, along with a 
significant enhancement in cognitive performance (34). 

maintain the long-term patency of the connection (7,14). 
With the development of supermicrosurgery, some 
studies have explored finer anastomoses involving 
vessels smaller than 0.5 mm, which may enhance conduit 
stability and reduce tissue reactivity.
	 In patients with AD, functional evaluation of the 
MLV system can be performed using contrast-enhanced 
magnetic resonance imaging (MRI) (31). Imaging studies 
have demonstrated that MLV function is significantly 
impaired in AD, and particularly in its moderate to 
advanced stages, with lymphatic flow decreasing by 
nearly 40% compared to age-matched controls (26,32). 
Further evidence suggests that CSF flow disturbances are 
strongly correlated with cognitive decline and that the 
efficiency of Aβ clearance is positively associated with 

Figure 1. Schematic diagram of the MLVs and pathways of metabolic waste clearance. Notes: Green lines indicate lymphatic routes; blue, 
venous structures; arrows, waste flow direction. Aβ, β-amyloid; CSF, cerebrospinal fluid; dcLNs, deep cervical lymph nodes; MLVs, meningeal 
lymphatic vessels; p-Tau, hyperphosphorylated tau protein; IJV, internal jugular vein.
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Additionally, mechanical stress induced by CSF flow 
dynamics may regulate VEGF-C expression and thereby 
modulate lymphatic function indirectly (35). In 5xFAD 
mice, ablation of MLVs results in a significant increase 
in meningeal macrophage populations within just one 
week, indicating that Aβ accumulation in dysfunctional 
MLVs induces local inflammation (26). Subsequent 
studies have demonstrated that restoring MLV function 
can effectively suppress microglial overactivation and 
attenuate chronic neuroinflammation within the brain 
(36). Other findings suggest that CSF hydrodynamic 
abnormalities associated with AD may impair Piezo1 
channel activation, thereby reducing the mechanosensory 
capacity of MLVs, impairing waste clearance, and 
promoting Aβ deposition in brain tissues (37).
	 In summary, dysfunction of the MLV system is 
closely associated with impaired metabolic waste 
clearance and heightened neuroinflammation in 
AD. Given this mechanism, LVA represents a novel 
surgical intervention aimed at reestablishing lymphatic-
venous drainage and improving intracranial metabolic 
homeostasis. It is rapidly gaining attention as a promising 
exploratory approach in the treatment of AD.

3. Clinical challenges and future directions

Currently, the use of LVA to treat AD remains in an 
exploratory phase. Most clinical studies conducted 
to date are observational or non-randomized, with 
small sample sizes, heterogeneity in study design, 
and inconsistent outcome measures. Critically, there 
is a lack of high-quality, multicenter, double-blind, 
prospective randomized controlled trials (RCTs), which 
significantly limits the robustness and generalizability of 
the evidence base. Given that AD is a slowly progressive 
neurodegenerative condition, short-term follow-up is 
insufficient to fully evaluate the long-term effects of a 
surgical intervention on disease trajectory. Large-scale, 
methodologically rigorous, and long-duration studies 
need to be promptly conducted to assess the sustainability 
of therapeutic benefits, clarify patient eligibility criteria, 
compare the efficacy of different surgical techniques, and 
document postoperative complications. A structured and 
scientifically sound research framework is essential.
	 Notably, there is substantial variability among 
clinical centers in terms of preoperative assessment and 
inclusion criteria. The absence of standardized patient 
selection protocols and clearly defined inclusion and 
exclusion criteria undermines the reliability of the current 
findings. Given the substantial clinical and pathological 
heterogeneity inherent in AD, whether LVA offers 
universal benefit remains unclear. Future efforts should 
prioritize the development of individualized screening 
models incorporating pathology subtypes, neuroimaging 
profiles, CSF dynamics, biomarker levels, and cognitive 
assessments. Such precision-based approaches would 
optimize patient selection, enhance treatment efficacy, 

and minimize unnecessary or ineffective interventions.
	 From a technical perspective, LVA is substantiated 
by a well-defined anatomical rationale, but there are 
still inconsistencies in its implementation. The type of 
anastomosis (e.g., end-to-end, end-to-side, lymphatic 
valve reconstruction), choice of target vessels, 
intraoperative imaging techniques, and postoperative 
assessment protocols vary among facilities. Given that 
the procedure requires high-level supermicrosurgical 
skills and is technically demanding, differences in the 
surgeon's experience and technique may directly impact 
outcomes. To ensure safety, reproducibility, and broader 
adoption, a unified set of technical guidelines and a 
formalized training and credentialing system should be 
established.
	 Ethical and regulatory considerations are equally 
critical. As an invasive intervention, and particularly 
one in a population with cognitive impairment, the 
ethical performance of LVA must be rigorously upheld. 
Comprehensive informed consent procedures are 
essential, ensuring that patients and their caregivers 
fully understand the purpose, anticipated benefits, 
uncertainties, and potential risks of the surgery.
	 Despite these challenges, LVA represents a novel 
intervention that seeks to restore the brain's metabolic 
clearance pathways—an emerging paradigm in the 
management of AD. Future studies should explore the 
potential synergy between LVA and other therapeutic 
strategies, including stem cell therapy (6), anti-Aβ 
monoclonal antibodies  (38,39), and neurorehabilitation 
techniques such as sensory-paired associative stimulation 
(SPA) (40). International research, including work 
by Louveau et al. (41) and Iliff et al. (42), has laid a 
theoretical foundation for the role of the MLV system in 
neurological disease. Future clinical trials of LVA should 
adopt internationally benchmarked methodologies, 
including multicenter, double-blind, and stratified 
randomization designs, to elevate the level of evidence 
and facilitate a global consensus.

4. Conclusion

LVA has emerged as a promising microsurgical 
technique based on the MLV system's role in clearing 
brain metabolic waste. Early clinical studies suggest 
that LVA may improve waste drainage and delay disease 
progression in AD, with preliminary evidence supporting 
its short-term efficacy and safety. China is at the forefront 
of global exploration in this area, with multiple centers 
reporting initial procedural experience and technical 
innovation.
	 Nevertheless, LVA remains in the early stages of 
clinical validation. Most existing studies are limited 
in sample size and methodological rigor and lack 
standardized protocols or high-quality evidence to 
support widespread clinical adoption.
	 In summary, LVA introduces a novel therapeutic 
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concept centered on reconstructing brain clearance 
pathways. It expands the scope of AD treatment beyond 
conventional pharmacology. As a technology still under 
evaluation, its future clinical relevance will depend on 
in-depth research into mechanisms, rigorous validation 
in clinical trials, and collaborative development of 
standardized procedures. Only through the convergence 
of verified efficacy, technical standardization, and robust 
regulatory oversight can LVA attain a clearly defined role 
in the evolving multimodal treatment landscape of AD.
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1. Introduction

Colorectal cancer (CRC) is among the most prevalent 
malignancies globally, with over 50% of patients 
eventually developing colorectal liver metastasis (CRLM) 
(1,2). The high incidence of CRLM and its pivotal role in 
degrading patient survival underscores the importance of 
early and accurate classification within this population. 
Precise classification of CRLM serves as a cornerstone 
for optimizing therapeutic strategies. Moreover, it plays a 
pivotal role in predicting treatment responses and patient 
outcomes, thereby enabling more personalized and 
effective clinical management (3).
	 Conventional classification methods, such as 
histopathological analysis, imaging evaluation, and 
clinical risk scoring (CRS), while valuable, have notable 
limitations, including subjectivity, time spent, and 
dependency on expert interpretation (4). In contrast, 
artificial intelligence (AI) offers the potential for 
automated, efficient, and scalable classification, 
addressing the constraints of conventional approaches. 
AI excels in handling multimodal data, integrating 

information from imaging, genomics, and clinical 
parameters to enhance the accuracy of classification 
models (5,6).
	 This review provides a comprehensive overview 
of the role of machine learning (ML) in CRLM 
classification, focusing on current methodologies, data 
applications, and future directions. Specifically, the 
discussion covers established classification frameworks 
for CRLM, including intrapatient stratification (e.g. 
sensitivity to treatment) and interpatient subgrouping (e.g. 
distinguishing CRLM from liver metastases of non-CRC 
origins). By integrating AI advances in clinical use, this 
review aims to highlight the transformative potential of 
AI in CRLM management, promoting the advancement 
of precision medicine in oncology.

2. The concept of integrating AI into CRLM 
classification

In clinical practice, metastatic liver cancer staging 
primarily relies on the TNM system established by 
the AJCC in 2017, which classifies cancer based on 
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tumor invasion, lymph node involvement, and distant 
metastases. However, growing evidence suggests that 
this pathological classification often fails to fully reflect 
patient heterogeneity at specific stages. For example, 
with current advances in medical care, many patients 
classified as having advanced-stage disease under the 
TNM system still demonstrate the potential for long-
term survival (7). Consequently, clinical guidelines are 
increasingly reevaluating its role in determining surgical 
indications.
	 A more comprehensive and precise staging system is 
urgently needed to guide personalized cancer treatment. 
Advances in AI, multi-omics sequencing, and clinical 
data integration are enabling more accurate and efficient 
classification models. ML-based systems outperform 
conventional methods in predicting treatment responses 
and prognoses, while AI-driven clinical decision support 
systems (CDSS) are transforming oncology care. This 
review aims to explore and validate these emerging 
possibilities (Figure 1)

2.1 Current methods of clinical classification of CRLM

2.1.1. Histopathological classification (HGP)

As early as 2001, Vermeulen et al. identified three 
histopathological growth patterns (HGPs) in HE-stained 
sections of CRLM: desmoplastic (dHGP), pushing 
(pHGP), and replacement (rHGP) (8). In dHGP, the 
metastatic lesion is separated from the liver parenchyma 
by a stromal layer, with tumor cells infiltrating the matrix 
but not directly contacting hepatocytes. In pHGP, only 

a thin reticulin fiber layer separates tumor cells from 
hepatocytes, with metastatic lesions compressing and 
displacing hepatic plates. Unlike these patterns, rHGP 
preserves liver architecture, as tumor cells replace 
hepatocytes within hepatic plates while maintaining 
direct contact with normal hepatocytes. Notably, pHGP 
exhibits a higher ratio of proliferative endothelial cells 
compared to the other two (9).
	 Studies have demonstrated that different HGP 
patterns have a significant impact on patient prognosis. 
For instance, pHGP is associated with poorer survival 
outcomes (10), whereas dHGP correlates with better 
survival (11,12). Moreover, HGP classification also 
aids in developing various clinical strategies. As an 
example, Lazaris et al. demonstrated that bevacizumab 
is more effective in treating dHGP-type CRLM with 
abundant angiogenesis compared to rHGP-type CRLM 
(13). However, despite being a valuable classification 
system, HGPs has several limitations. For example, 
the growth patterns of tumor tissues may be altered 
by chemotherapy, and the classification still relies on 
postoperative histological analysis of tissue sections.

2.1.2. MMR/MSI classification

The DNA mismatch repair (MMR) system plays a 
critical role in correcting base mismatches or insertion/
deletion errors that occur during DNA replication, 
and it was first identified as being associated with the 
progression of CRC (14). Defects in the MMR system 
led to the microsatellite instability (MSI) phenotype, also 
known as deficient MMR (dMMR). Based on the MMR/
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Figure 1. AI-driven Framework for Precision Oncology in Colorectal Cancer Liver Metastases. This figure depicts the integration of 
sequence data, imaging, and structured data with AI models to enhance tasks such as tumor classification, molecular subtyping, mutation 
prediction, and evaluation of treatment response. Central to this workflow is the use of advanced machine learning and deep learning techniques 
to facilitate personalized clinical decision-making.
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combinations available at the time. However, despite 
its pivotal role in clinical practice over the years, an 
increasing number of studies have sought to enhance 
the predictive power of the CRS system. This is being 
explored through the incorporation of additional clinical 
or molecular indicators, as well as by integrating CRS 
with other classification systems to address its limitations 
in specific contexts (28,29).

2.2. AI models commonly used in tumor classification

The standard workflow in ML research typically 
involves key steps such as data preprocessing, model 
construction, model training, parameter optimization, 
and external validation. Model selection plays a pivotal 
role in both data analysis and the advancement of 
research. An appropriate model not only significantly 
enhances research efficiency but also improves the 
accuracy and reliability of analytical results. This section 
systematically describes and discusses ML models, 
which are categorized into three types: conventional 
models, deep learning models, and emerging models.

2.2.1. Conventional ML models

Support vector machines: Support vector machines 
(SVM) were first developed by Cortes et al. in 1995 
as a method for binary classification (30). Before the 
resurgence of deep learning, SVM was one of the 
most widely used ML models in various domains. 
The fundamental principle of SVM is to identify an 
optimal separating hyperplane in the feature space that 
divides data into distinct classes while maximizing the 
margin between them. To achieve this, SVM uses kernel 
methods, utilizing a mapping function to transform 
input data from its original feature space into a higher-
dimensional space, where a separating hyperplane can 
be more easily identified. The strengths of SVM lie in 
its ability to handle high-dimensional data, its suitability 
for small sample sizes, and its excellent generalization 
capabilities. SVM has been widely applied to tumor 
subtyping and classification, including applications that 
incorporate imaging data (31) or transcriptomic data 
(32). However, SVM has certain limitations, such as 
longer training times for large datasets or datasets with 
high feature dimensions, and its sensitivity to noise and 
outliers, which can lead to overfitting.
	 Random forest: Random forest (RF), first developed 
by Breiman in 2001, is an ensemble learning method 
that solves classification and regression problems by 
constructing multiple independent decision trees (33). In 
the structure of RF, each internal node of a decision tree 
represents a feature, while each leaf node corresponds 
to a classification (category) or regression (numerical) 
outcome. The final prediction is generated by aggregating 
the outputs of all trees using a voting mechanism (for 
classification problems) or an averaging mechanism 

microsatellite status, metastatic CRC patients can be 
classified into microsatellite stable (MSS, also referred 
to as proficient MMR, pMMR) and MSI (dMMR). 
Studies have shown that mCRC patients with dMMR 
generally have poorer survival outcomes compared 
to those with pMMR (15,16). However, these dMMR 
patients represent a small subset, accounting for only 
3–5% of cases. Recent research has highlighted that 
monoclonal antibodies targeting immune checkpoints 
such as programmed cell death protein-1 and cytotoxic 
T-lymphocyte-associated protein 4 exhibit remarkable 
and durable benefits in this minority of MSI patients 
(17-20). Additionally, MSI status serves as a predictive 
biomarker for sensitivity to immune checkpoint blockade 
(ICB) therapy (21). In contrast, ICB therapies have not 
demonstrated superior efficacy over standard treatments 
in pMMR mCRC patients, underscoring the need for 
further exploration in this area (22).

2.1.3. Clinical staging (TNM)

The TNM staging system is based on the tumor, lymph 
node, and metastasis (TNM) concept first proposed by 
Pierre Denoix in the 1940s and 1950s. It remains the 
most commonly used staging system in the clinical 
management of CRLM (23,24). This system classifies 
cancer based on three key parameters: T refers to the 
size and depth of tumor invasion; N describes the 
involvement of regional lymph nodes; M indicates the 
presence of distant metastases (25). The TNM system 
provides a comprehensive framework for evaluating the 
severity and extent of tumor spread. However, due to its 
relatively narrow evaluation criteria, recent studies have 
suggested incorporating additional factors, such as tumor 
burden and the number of metastatic lesions, to improve 
the TNM system's prognostic accuracy for CRC patients 
and to better guide treatment strategies (26,27).

2.1.4. Clinical risk score

The clinical risk score has emerged in recent years as one 
of the most prominent tools for evaluation of colorectal 
cancer liver metastases (CRLM). A clinical risk score 
was initially proposed by Fong et al. in 1999. This 
landmark study analyzed clinical and pathological data 
from 1,001 consecutive patients and identified five key 
clinical indicators for the scoring system: the nodal status 
of the primary tumor, a disease-free interval of less than 
12 months between the primary tumor and the detection 
of liver metastases, the presence of more than one tumor, 
a preoperative CEA level exceeding 200 ng/ml, and 
a maximum tumor diameter greater than 5 cm. Each 
criterion is assigned 1 point, and the total score stratifies 
patients by risk. The aforementioned study demonstrated 
that patients with lower CRS scores had significantly 
better 5-year survival rates compared to those with 
higher scores, and the CRS outperformed other scoring 
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(for regression problems). RF is highly robust against 
overfitting and can be parallelized to efficiently handle 
large-scale datasets. As a non-parametric approach, 
it effectively models complex nonlinear relationships 
and high-dimensional feature data, and it has been 
extensively applied to tumor subtyping and classification, 
including studies on breast cancer and pancreatic cancer 
(34,35). However, the ensemble nature of RF reduces 
its interpretability, and processing large datasets with 
many decision trees can require substantial time and 
computational resources.
	 Regression models: Regression models are widely 
used in statistics and ML to analyze relationships 
between a dependent variable and one or more 
independent variables. While regression methods can 
predict outcomes and explain variable influences, they 
are primarily statistical tools rather than standalone 
ML models. The core of regression models lies in 
finding a function that optimally maps the input values 
of independent variables to the output values of the 
dependent variable, typically by minimizing the error 
between predicted and observed values. Regression 
models encompass various types, including linear 
regression, logistic regression, lasso regression, and Cox 
regression. Cox regression, developed by Cox in 1972 
(36), and lasso regression, developed by Tibshirani in 
1996 (37), are the most commonly utilized in oncology 
research. For instance, Liu et al. utilized Cox regression 
to investigate the relationship between metabolic-
associated fatty liver disease (MAFLD) and multiple 
cancers (38). Li et al. used a Bayesian lasso model to 
integrate multi-omics data for lung cancer classification 
(39). Each regression model has its own strengths and 
limitations. In general, regression models are simple, 
interpretable, and computationally efficient, with 
various regularization methods available to enhance 
their generalizability. However, they are also sensitive to 
outliers, heavily dependent on data characteristics, and 
often less effective when dealing with complex high-
dimensional datasets.
	 Gradient boosting algorithm: Gradient boosting 
machine (GBM) is an ensemble learning method 
developed by Friedman in 2001 (40). It iteratively 
optimizes a target function to achieve the best possible 
solution by sequentially combining multiple weak 
learners (typically decision trees) into a strong learner. 
Each weak learner focuses on correcting the prediction 
errors of the previous model. GBM demonstrates 
exceptional performance in handling nonlinear, high-
dimensional, and large-scale datasets, effectively 
capturing complex data patterns while maintaining 
robustness against noise and outliers. Popular 
implementations of gradient boosting include XGBoost, 
LightGBM, and CatBoost. For example, Rodriguez et 
al. used XGBoost combined with imaging and clinical 
parameters for risk stratification of hepatocellular 
carcinoma (HCC) patients (41), while Qi et al. used 

LightGBM as the optimal algorithm for predicting 
cardiovascular disease (CVD)-cancer comorbidity (42). 
However, GBM has some limitations, such as a lengthy 
training time for large datasets and a high dependence on 
hyperparameter tuning, which often requires extensive 
optimization to achieve peak performance.
	 k-nearest neighbors: The k-nearest neighbors (kNN) 
algorithm is an instance-based, non-parametric learning 
method known for its simplicity and intuitive nature. It 
predicts outcomes by measuring the similarity between 
samples. Specifically, kNN calculates the distance 
between an input sample and all training samples, selects 
the k nearest neighbors, and infers the target category 
(for classification problems) or value (for regression 
problems) based on the labels or values of these 
neighbors. A defining feature of kNN is its lack of an 
explicit training phase, as it relies primarily on the stored 
training data and distance computations. This simplicity 
makes it easy to implement and adapt. The algorithm 
has been used in various medical research fields. For 
instance, Wang et al. used kNN for lung cancer subtype 
classification (43), and modified kNN methods have 
been used to classify CRC tissues (44).

2.2.2. Deep learning models

Deep learning models (DLMs) are an extension of 
artificial neural networks (ANNs) and represent a more 
advanced and sophisticated branch of ML. Broadly, 
neural networks can be categorized into shallow neural 
networks (typically consisting of one or two hidden 
layers) and deep neural networks (DNNs, generally 
comprising three or more hidden layers). The latter forms 
the foundation and most prevalent framework for DLMs.
	 DLMs excel in non-linear modeling, making them 
effective for pattern recognition and predictive tasks. 
These networks act as multi-layer feature extractors, 
transforming input data (e.g. images or text) into abstract 
representations. Using these features, models interpret 
and process data for various applications, such as 
analyzing histopathological slides to distinguish tumor 
from non-tumor regions.
	 The following sections wil l  delve into the 
foundational concepts of DLMs, focusing on deep neural 
networks as a paradigm of DLMs and their commonly 
implemented architectures, such as convolutional neural 
networks and recurrent neural networks.
	 Deep neural network: Deep neural networks (DNNs) 
are fundamental in deep learning, enabling hierarchical 
feature extraction and complex pattern recognition. A 
typical DNN consists of an input layer, multiple hidden 
layers, and an output layer, with each neuron in a layer 
connected to all neurons in the previous layer. DNNs 
operate through two key processes: forward propagation 
and backpropagation. In forward propagation, input data 
is passed layer by layer, with each neuron computing 
a weighted sum of its inputs, followed by a non-linear 
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activation function. This allows the network to model 
complex patterns. Backpropagation is the cornerstone of 
training DNNs. It calculates the error between predicted 
and true values, propagates it backward, and updates 
weights using optimization algorithms. This iterative 
process minimizes errors and refines model performance.
	 DNNs have displayed exceptional performance 
in handling highly complex datasets. For instance, 
Khan et al. integrated over 23,000 CT and pathology 
images to develop a multimodal DNN for predicting 
metastasis and variant classification of liver tumors, 
achieving an accuracy of 96.06% and an AUC of 0.832 
(45). Nevertheless, DNNs have notable limitations. In 
addition to their high demands for large-scale data and 
computational resources, they are inherently "black box" 
models, making their learning processes and decision 
logic difficult to interpret—an issue that constrains their 
broader adoption in medicine. Moreover, conventional 
DNNs may suffer from shallow feature loss when dealing 
with high-dimensional, non-linearly distributed complex 
data, often requiring compensation or refinement 
through the introduction of attention mechanisms or skip 
connections.
	 Convolutional neural networks: Convolutional neural 
networks (CNN) are a class of DNNs that incorporate 
convolutional layers and that are particularly suited 
for processing data with grid-like topology, such as 
images and time-series data. Derived from multi-layer 
perceptrons, CNNs are designed to efficiently capture 
spatial locality in data by introducing specialized 
structures like convolutional and pooling layers.
	 A typical CNN architecture consists of five main 
components: an input layer, convolutional layers, pooling 
layers, fully connected layers, and an output layer. The 
convolutional layer is the backbone of CNNs, utilizing 
convolutional kernels (or filters, typically small matrices) 
to slide over the input data and extract local features 
such as edges, textures, and shapes. Each kernel learns 
specific feature patterns, with its parameters optimized 
through backpropagation. The pooling layer reduces the 
dimensions of the feature maps using down-sampling 
techniques, thereby decreasing computational complexity 
and enhancing translational invariance. Finally, the fully 
connected layer maps the extracted high-dimensional 
features into specific outputs, such as classification or 
regression predictions.
	 Thanks to their powerful feature extraction 
capabilities, CNNs excel in various computer vision 
tasks. For instance, Cho et al. used deep convolutional 
neural networks (DCNNs) in conjunction with image 
data to distinguish between benign and malignant lip 
skin lesions (46). Similarly, Chang et al. utilized CNNs 
combined with self-attention mechanisms to analyze 
histopathological slides in order to predict MSI status in 
CRC patients (47). However, CNNs also have notable 
limitations. They require large-scale training datasets 
and significant computational resources to achieve 

optimal performance. Moreover, CNNs are sensitive to 
hyperparameter settings, often necessitating extensive 
tuning to refine the model for specific applications.
	 Recurrent neural networks: Recurrent neural 
networks (RNNs) are specifically designed to process 
sequential data and can trace their origins back to 
Hopfield Networks of Associative Memory, developed 
by Hopfield in 1982 (48). Unlike conventional 
feedforward neural networks (e.g. DNNs), RNNs possess 
recurrent connections and memory capabilities, allowing 
them to retain information across time steps and respond 
to current inputs in the context of past information. This 
unique structure makes RNNs particularly suitable for 
tasks involving temporal dependencies, such as speech 
recognition, natural language processing, and time-series 
forecasting.
	 Despite their advantages, RNNs face challenges such 
as vanishing and exploding gradients, particularly when 
processing long sequences. To address these issues, 
several variants of RNNs have been developed, with 
the most prominent being the long short-term memory 
(LSTM) network (49). LSTM introduces a gating 
mechanism that regulates the retention and forgetting of 
information, overcoming the limitations of conventional 
RNNs in learning long-term dependencies. LSTM 
features three core gates—input, forget, and output 
gates—that collectively govern the flow and storage 
of information within the hidden states, enabling it to 
effectively capture long-range dependencies.
	 RNNs have accelerated advances in oncology 
research. For example, Yun et al. developed a transfer 
recurrent feature learning framework for intraoperative 
imaging and diagnosis of epithelial cancers (50). 
Similarly, a study combined CNNs with RNNs to 
differentiate benign from malignant fibroepithelial breast 
lesions, achieving promising results (51).

2.2.3. Emerging models and learning strategies

With the rapid advancement of AI technologies, an 
increasing number of emerging models and learning 
strategies are being applied to tumor classification and 
other related medical tasks. These approaches place 
greater emphasis on multimodal data integration, few-
shot learning, and model interpretability, addressing 
the limitations of conventional models while driving 
innovation in the use of ML in medicine.
	 Transformer: The Transformer is a deep learning 
architecture based on attention mechanisms, initially 
designed for natural language processing tasks. With its 
typically deeper and more sophisticated layer design, 
the Transformer is categorized as a type of DNN. It 
processes input text or data sequences by dividing them 
into segments and using attention scores to determine the 
weight of each segment in the output module.
	 Compared to previous models, the Transformer 
uses multi-head self-attention mechanisms to process 
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input sequences in parallel, significantly improving 
computational efficiency and enabling effective 
modeling of long-range dependencies. The Transformer 
architecture consists of two main components: the 
encoder and the decoder. The encoder transforms input 
data into abstract contextual representations, while 
the decoder generates target sequences based on these 
contextual representations.
	 In tasks such as image segmentation and tumor 
classification, Transformers demonstrate exceptional 
performance. For instance, Xin et al. developed 
an improved Transformer model for skin cancer 
classification, achieving an accuracy exceeding 94% (52). 
Similarly, Xu et al. proposed a Transformer-based model, 
Prov-GigaPath, which not only classified subtypes across 
multiple cancer types but also identified molecular 
expression patterns and predicted gene mutations from 
histopathological slides, outperforming conventional 
models in various aspects (53). Nevertheless, the 
Transformer architecture faces certain challenges. Its 
complex and opaque internal mechanisms make the 
decision-making process difficult to interpret, and its 
high demand for computational resources remains a 
significant obstacle to its widespread use in oncology.
	 Multimodal ML: Multimodal ML is an approach 
that integrates information from different data sources 
to extract complementary features from multiple types 
of data simultaneously. Given the diverse data involved 
in oncology research—such as imaging, genomic, 
and transcriptomic data—multimodal ML has high 
compatibility and significant potential for advancing 
cancer research.
	 Just like DNNs, multimodal learning does not 
refer to a specific model but rather demonstrates the 
variety of data. For instance, Qian et al. reported the 
development of a multimodal model named BMU-Net, 
which integrates clinical data, mammographic images, 
and trimodal ultrasound data to diagnose benign and 
malignant breast tumors, achieving an overall diagnostic 
accuracy exceeding 90% (54). Multimodal ML models 
are evolving toward more efficient data fusion, improved 
interpretability, and enhanced clinical applicability. By 
integrating data from multiple modalities, these models 
can capture deeper insights that are often unavailable 
from a single data source, thereby offering more accurate 
and comprehensive support for tumor classification and 
diagnosis.
	 Self-supervised learning: In AI, ML approaches can 
be categorized into supervised learning, unsupervised 
learning, and reinforcement learning, based on whether 
the analyzed data includes specific labels or annotations. 
Self-supervised learning (SSL) is considered an extension 
of unsupervised learning. Unlike supervised methods, 
SSL does not require extensive labeled datasets. Instead, 
its core principle is to construct pretext tasks that enable 
models to extract meaningful feature representations 
from unlabeled data for downstream tasks. SSL methods 

are broadly divided into two main categories: generative 
methods and contrastive methods. Generative methods 
train models by reconstructing data, such as completing 
images or predicting missing words, making them ideal 
for reconstruction tasks. Contrastive methods, in contrast, 
use positive and negative sample pairs to help models 
distinguish similarities and differences.
	 These methods are particularly effective in image 
classification and data representation tasks. For example, 
Schirris et al. developed DeepSMILE, a contrastive 
SSL framework for classifying whole slide images of 
HE-stained tissue sections (55). Similarly, Zhang et al. 
developed SANDI, a model capable of spatial cellular 
classification, by first learning pairwise similarities 
among unlabeled data and subsequently incorporating 
reference data (56).  While SSL eliminates the 
dependency on large-scale labeled datasets, developing 
high-performance SSL models requires carefully 
designed pretext tasks and significant computational 
resources.
	 In conclusion, while ML models face challenges in 
data dependency and interpretability, AI integration into 
medicine is a key direction for the future. By combining 
AI with conventional methodologies, particularly in 
cancer detection, diagnosis, subtyping, and personalized 
treatment, AI-driven research is advancing precision 
medicine and overcoming technical barriers in 
healthcare.

3. Application of ML to CRLM classification

Based on task requirements and technical methodologies, 
the application of ML to CRC liver metastasis 
classification can be divided into two major categories: 
single-modality task classification and multi-modality 
task classification. The former can be further subdivided 
into three subcategories: classification based on 
imaging data, classification based on omics data, and 
classification based on structured data.

3.1. Single-modality task classification

3.1.1. Based on imaging data

ML has been extensively applied to imaging data for 
CRLM classification, with researchers exploring both 
conventional ML models and advanced deep learning 
frameworks. The following studies demonstrate the 
diversity of approaches and highlight their respective 
strengths and limitations (onlin data: Table 1, https://
www.biosciencetrends.com/supplementaldata/252).
	 Tharmaseelan et al. conducted a study using CT 
imaging data from 78 patients, encompassing 1,296 
metastatic liver lesions, to evaluate the performance 
of various ML models (57). These models included 
conventional ML classifiers such as XGBoost and kNN, 
as well as a DLM based on CNN. The CNN model was 



BioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.com

(156)

derived from the DenseNet-121 architecture and trained 
using the PyTorch platform. The objective was to identify 
the primary tumor site in gastrointestinal cancer patients 
with liver metastases. Interestingly, the kNN model 
achieved the highest discriminative ability (AUC: 0.87), 
outperforming the CNN model (AUC: 0.80). However, 
the CNN model demonstrated superior accuracy (0.83 
vs. 0.67). These findings suggest that conventional ML 
models may, in certain classification tasks, perform 
comparably or even better than advanced DLMs, and 
especially with limited datasets.
	 Building upon this, Jia et al. proposed a DLM 
based on CT imaging to identify the primary tumor 
sites in patients with liver metastases (58). Their study 
included imaging data from 489 patients and a total of 
769 metastatic liver lesions. To provide a comparative 
analysis, the researchers also developed conventional 
ML models, including Decision Tree, RF, and kNN. 
With a larger sample size, the DLM outperformed 
conventional ML models in all metrics. Specifically, the 
DLM achieved an accuracy of 0.714 and an AUC of 0.811 
on the validation set, and external validation yielded an 
accuracy of 0.667 and an AUC of 0.784. In comparison, 
the best-performing conventional model, RF, achieved 
a maximum AUC of 0.775 and an accuracy of 0.655. 
These results highlight the advantages of DLMs in using 
larger datasets for superior performance.
	 Moving into histopathological growth pattern 
analysis, Höppener et al. developed a CNN-based model 
for binary classification of HGPs in liver metastases 
(desmoplastic vs. non-desmoplastic) using digitalized 
whole-slide images (59). Their algorithm, neural image 
compression (NIC), is a multi-task learning framework 
that compresses high-dimensional image patches into 
low-dimensional embeddings while preserving spatial 
information and suppressing noise. The study used 3,641 
slides from 932 patients for training and 870 slides for 
external validation. The model achieved outstanding 
results, with an AUC of 0.93 on the training set and 0.95 
on the validation set. By using supervised training across 
multiple histopathological tasks, NIC demonstrated the 
potential of multi-task learning in extracting transferable 
features for robust classification.
	 Similarly, Starmans et al. explored the use of CNNs 
to classify the HGPs of CRLM using CT data (60). The 
study used multi-observer segmentation, combining 
data from three human observers to train the model. 
Each lesion was segmented three times, effectively 
tripling the training sample size. Interestingly, the 
performance of the multi-observer model (AUC: 
0.69) was comparable to the single-observer models 
(maximum AUC: 0.72). Despite exploring ICC-based 
feature selection and ComBat for further analysis, these 
methods did not significantly improve performance. 
The aforementioned study highlights the challenges 
of utilizing multi-observer data and suggests the 
importance of optimizing segmentation techniques for 

better performance.
	 Turning to genetic mutation prediction, Wesdorp et 
al. developed models based on RF and gradient boosting 
algorithms to identify KRAS mutation status using 
CT imaging data (61). The study included 255 CRLM 
patients, split into training (n = 204) and test (n = 51) 
sets. While the ensemble classifier performed well on 
the test set (AUC: 0.86), it underperformed in external 
validation (AUC: 0.47). In contrast, RF demonstrated 
relatively better external performance (AUC: 0.54). 
These results reflect ongoing challenges in linking 
imaging features to genetic mutations, exacerbated by 
small sample sizes and insufficient preprocessing.
	 Similarly, Granata et al. utilized CT data to predict 
RAS mutations (62). They extracted 851 radiomic 
features from 77 liver metastases in 28 patients and 
constructed multiple ML models, including logistic 
regression, decision trees, kNN, and SVM. Multivariable 
analysis using logistic regression achieved superior 
performance (AUC: 0.953, accuracy: 98%), especially 
after z-score normalization. However, the authors 
noted no significant improvements when applying 
normalization techniques, raising questions about their 
utility in radiomic analysis.
	 Finally, Li et al. developed a comprehensive 
platform, the Radiomics Intelligent Analysis Toolkit 
(RIAT), for predicting liver metastasis risk (63). By 
integrating multiple ML methods and clinical data, 
RIAT demonstrated the value of combining advanced 
statistical and ML techniques for robust diagnostic tool 
development. Similarly, Kim et al. applied YOLO-based 
deep learning to large-scale CT imaging (64), achieving 
sensitivity comparable to radiologists but emphasizing 
its role as an assistive, rather than standalone, diagnostic 
tool.
	 Together, these studies highlight the diversity of 
imaging-based ML applications in CRLM classification, 
emphasizing the importance of task-specific adaptations, 
model optimization, and data integration.

3.1.2. Based on omics data

In the context of CRLM classification, omics data 
provide a rich source of biological insights, enabling ML 
models to predict risk, classify subtypes, and identify 
molecular features with significant diagnostic and 
prognostic implications. The integration of multi-omics 
datasets with ML not only offers enhanced classification 
accuracy but also deepens our understanding of the 
underlying molecular mechanisms driving CRLM.
	 Yu et al. used the AdaBoost algorithm to predict the 
risk of liver metastases in CRC patients using blood test 
markers (65). The study compared AdaBoost to five 
other algorithms, including Extremely Randomized 
Trees (ERT), Multilayer Perceptron, Stochastic Gradient 
Descent (SGD), RF, and XGBoost. AdaBoost, which 
dynamically adjusts sample weights to optimize weak 
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learners, achieved the highest diagnostic accuracy 
(89.3%) and precision (89.4%). Interestingly, MLP 
demonstrated the weakest performance, with an accuracy 
of 79.6% and a precision of 80.1%. The superior 
performance of AdaBoost was attributed to its robustness 
with small datasets, whereas MLP's reliance on larger, 
high-dimensional data likely limited its effectiveness 
in that study. This underscores the potential of simpler, 
adaptive algorithms in data-limited clinical settings.
	 Extending the analysis to tissue-level investigations, 
Kiritani et al. developed a logistic regression model 
using mass spectrometry data from 103 CRLM samples 
and 80 normal tissue samples to distinguish metastatic 
from non-malignant tissues (66). The model underwent 
validation using leave-one-out cross-validation 
(LOOCV), 10-fold cross-validation, and an independent 
cohort of 40 samples (20 CRLM and 20 non-cancerous 
tissues). Phosphatidylcholine, phosphatidylethanolamine, 
and monounsaturated fatty acids were found to be 
enriched in CRLM tissues, with the model achieving 
an exceptional accuracy of 99.5% and an AUC of 
0.9999. These findings highlight the synergy of mass 
spectrometry and ML in identifying molecular markers 
for CRLM diagnosis.
	 Taking a step further into molecular subtyping, 
Katipally et al. utilized data from the Phase 3 new EPOC 
randomized clinical trial to construct a neural network 
model for CRLM molecular subtyping (29). Sequencing 
data from 93 patients revealed 31 optimal features, 
including 24 mRNAs and 7 miRNAs, which were used 
for subtyping. In a validation cohort of 147 patients, 
the model classified CRLM into canonical, immune, 
and stromal subtypes, with immune subtype patients 
having the best 5-year OS (63%) and canonical subtype 
patients having the worst prognosis (43%). Incorporating 
molecular subtypes into clinical risk scores improved 
predictive performance (OS AUC increased from 0.59 
to 0.63). The aforementioned study demonstrates how 
molecular subtyping can enhance both prognostic 
stratification and personalized therapeutic strategies.
	 Finally, Moosavi et al. developed an RF-based 
CRLM classification model using transcriptomic 
data from 171 patients (67). The study compared 
the new LMS subtyping framework to the CMS and 
CRIS classification systems, using 829 CRC samples, 
including CRLM, primary CRC tumors, non-malignant 
liver tissues, organoids, and cell lines. Unlike CMS, 
which struggled to classify CRLM and which was 
influenced by prior systemic treatments, LMS effectively 
stratified samples into five subtypes (LMS1-5). LMS1 
was associated with the poorest prognosis (5-year OS 
of 15%, HR = 2.2, p = 9 × 10⁻⁴), while LMS5 exhibited 
stromal-like characteristics. LMS demonstrated superior 
prognostic stratification and independence from 
treatment-related biases, outperforming CMS and CRIS 
in this regard.
	 Together, these studies illustrate the potential of 

integrating omics data with ML for CRLM classification. 
From simple blood markers to comprehensive 
transcriptomic analyses, omics-driven ML approaches 
offer unparalleled opportunities to provide precision 
oncology, unravel molecular complexities, and provide 
robust frameworks for diagnosis and prognosis.

3.1.3. Based on structured data

Building on the success of imaging-based approaches, 
the application of ML to omics data has opened up new 
avenues for CRLM classification. By using molecular 
and biological datasets, these studies aim to glean deeper 
insights into tumor biology while improving diagnostic 
accuracy and prognostic predictions.
	 Nemlander et al. developed a gradient boosting 
model to identify non-metastatic colorectal cancer 
(NMCRC) patients during their first clinical visit (68). 
The study included 2,681 participants, consisting of 542 
NMCRC patients and 2,139 matched controls. Clinical 
data used for model construction included age, sex, 
primary healthcare (PHC) unit, NMCRC stage (I-III), 
the number of general practitioner consultations in the 
previous year, and all diagnoses reported in VEGA 
within the preceding year. The dataset contained 360 
different ICD-10 or KSH97-P diagnostic codes. Of the 
participants, 75% were used for training, while 25% 
were used for validation.
	 The model was constructed using the GBM package 
in R, with class-stratified 10-fold cross-validation. The 
final model correctly identified 99 out of 135 NMCRC 
cases, achieving a sensitivity of 73.3%, a specificity of 
83.5%, and an AUC of 0.832. Among the 361 predictors, 
184 variables were found to have predictive value, with 
16 factors showing a normalized relative influence 
(NRI) >1%. Notable predictors included changes in 
bowel habits, other diseases of the anus and rectum, 
iron deficiency anemia, and other and unspecified non-
infective gastroenteritis and colitis. These findings 
suggest that such symptoms may indicate an elevated 
risk of NMCRC.
	 Although studies utilizing structured data for 
CRLM classification are relatively scarce, this research 
highlights the potential of such data to contribute to early 
cancer detection. Structured data offers a non-invasive, 
cost-effective means of identifying diagnostic patterns 
that can complement other ML approaches in precision 
oncology.

3.2. Multimodal task classification

Moving beyond single-modality approaches, multimodal 
task classification integrates diverse datasets to improve 
predictive accuracy and uncover complex patterns in 
CRLM. By combining biological, clinical, and electronic 
health record (EHR) data, these models provide a 
comprehensive framework for understanding and 
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predicting disease progression.
	 Krishnan et al. developed a model using a Bayesian 
regularized neural network (BRANN) and sparse 
multilinear regression to classify CRC patients (69). The 
study integrated multiple biological datasets, including 
plasma lipid and protein levels, chemokines, gene 
mutation status, and clinical information. Initially, a 
regression model, MLR-EM, was constructed to extract 
key feature data, identifying 9 lipids as significant 
predictors for distinguishing CRLM patients. Using these 
features, the BRANN model, a variant of ANN with 
Bayesian regularization, successfully classified cancer-
free individuals, CRC patients, and CRLM patients. The 
model had an R2 of 0.77 and an accuracy of 87% on the 
training set and an R2 of 0.68 and an accuracy of 77% on 
the test set. The aforementioned study demonstrates the 
potential of integrating biochemical and clinical data for 
accurate classification of disease stages in CRC patients.
	 Li et al. combined EHR information and laboratory 
data to construct NLP and ML models in order to predict 
the likelihood of postoperative liver metastases in CRC 
patients (70). The study included 1,463 CRC patients, 
609 with CRLM and 854 without. A total of 18 features 
were analyzed using five conventional models and a 
bidirectional encoder representations from Transformer 
(BERT)-based NLP model. Among the conventional 
models, SVM demonstrated the best performance 
(AUC: 0.64, accuracy:  0.64), comparable to the NLP 
model (AUC: 0.676, accuracy: 0.636). When these two 
approaches were fused into a single model, the combined 
framework exhibited significantly enhanced performance, 
achieving an accuracy of 80.8% and precision of 80.3%. 
Moreover, the combined model outperformed physicians 
in an external validation cohort in both accuracy (0.760 
vs. 0.658 and 0.640) and precision (0.763 vs. 0.697 and 
0.670). These results highlight the potential of combining 
EHR data with advanced NLP and ML techniques to 
improve predictive accuracy for CRLM.
	 These studies underscore the advantages of 
multimodal approaches in CRLM classification, using 
complementary datasets to refine predictions and 
improve patient stratification. By integrating diverse 
data sources, multimodal models address the limitations 
of single-modality methods and pave the way for more 
robust and clinically actionable insights.

4.  Cl inical  decis ion-making and treatment 
optimization based on cancer classification

4.1. Classification-guided personalized treatment

ML models are increasingly being used to guide clinical 
decision-making and optimize treatment strategies 
for CRLM patients. These models provide valuable 
tools for predicting therapeutic responses, stratifying 
patients, and personalizing treatment approaches. The 
following studies illustrate how classification results can 

inform clinical decisions and improve patient outcomes 
(onlin data: Table 2, https://www.biosciencetrends.com/
supplementaldata/252).
	 To begin with, Karagkounis et al. developed an RF 
model to evaluate the pathological response of CRLM 
patients to chemotherapy (71). The study included 
85 patients and 95 liver metastases, with 63 lesions 
classified as responders and 32 as non-responders 
based on histopathological assessments. To address a 
data imbalance, the authors implemented cost-sensitive 
learning by assigning higher penalties for misclassifying 
non-responders. The model outperformed conventional 
methods, including RECIST and morphological 
evaluation, achieving an AUC of 0.87 compared to 0.53 
and 0.56, respectively. This demonstrates the potential 
of ML models to provide more accurate and nuanced 
assessments of chemotherapy responses.
	 Building on the use of  CT data  to  predict 
chemotherapy response, Maaref et al. utilized CNNs 
to predict treatment responses in CRLM patients (72). 
The study included 202 patients with 444 lesions, 
where 230 had previously undergone FOLFOX-based 
chemotherapy. The CNN model achieved outstanding 
performance in distinguishing treated from untreated 
lesions (AUC: 0.97) and predicting chemotherapy 
responses (AUC: 0.88, sensitivity: 98.1%). These 
findings highlight the ability of CNNs to handle large 
imaging datasets and assist in managing metastatic 
lesions.
	 Expanding on the prediction of chemotherapy 
response, Davis et al. used an attention-based deep 
learning framework to analyze CT images and predict 
responses to neoadjuvant chemotherapy in CRLM 
patients (73). Using a dataset of 33,619 CT images from 
95 patients, the model assigned attention weights to 
different image patches and achieved an AUC of 0.77, far 
surpassing the logistic regression model based on Fong 
scores (AUC: 0.41). These results emphasize the utility 
of attention mechanisms and multi-instance learning 
frameworks when analyzing complex imaging data with 
weak annotations.
	 Taking the next step toward multi-modal modeling, 
Qi et al. developed an artificial neural network (ANN) 
model to predict the sensitivity of unresectable CRLM 
patients to irinotecan-based chemotherapy (74). The 
study included 116 patients, randomly divided into 
training (n = 81) and validation (n = 35) sets. Feature 
selection using Pearson correlation and the MRMR 
algorithm identified key imaging and clinical variables 
for model construction. The primary ANN model 
(p-model) integrated multi-scale resampling of imaging 
features with clinical data, while three variant ANN 
models used only single-scale inputs. The p-model 
achieved an AUC of 0.754 (training) and 0.752 
(validation), surpassing the best conventional model, 
XGBoost (AUC: 0.718 and 0.704). Further intra-ANN 
comparisons confirmed the superiority of multi-modal 
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integration, with the p-model outperforming single-scale 
ANN variants. The aforementioned study underscores the 
value of combining multi-scale imaging and clinical data 
to enhance chemotherapy response prediction, offering 
a promising tool for optimizing CRLM treatment 
strategies.
	 Focusing on precision medicine, Lu et al. developed 
a hybrid CNN-RNN model to predict VEGF therapy 
sensitivity in mCRC patients based on the VELOUR 
trial (75). By combining CNN-based feature extraction 
with RNN-based temporal sequence analysis, the 
model demonstrated superior performance in predicting 
early treatment responses (AUC: 0.76) compared to 
conventional RECIST (AUC: 0.66) and ETS (AUC: 0.60) 
standards. Moreover, responders identified by the model 
had a significantly longer median OS (18.0 months vs. 
10.4 months for non-responders, HR = 0.49, p = 1×10⁻⁶). 
The aforementioned study highlights the potential of 
combining dynamic imaging data and ML for real-time 
therapeutic decision-making.
	 In terms of survival stratification, Endo et al. 
developed a decision-tree-based model to predict 
postoperative chemotherapy responses in CRLM patients 
(76). The study analyzed data from 1,358 patients, 
incorporating 18 demographic and clinicopathologic 
variables, including T stage, primary tumor location, and 
tumor burden score (TBS). Patients with lymph node 
metastasis, specific tumor locations, and certain KRAS 
statuses displayed significant benefits from adjuvant 
chemotherapy. Subgroup analyses revealed that patients 
with lymph node metastasis, left-sided or rectal primary 
tumors with low/high TBS, and right-sided tumors with 
KRAS mutations benefited significantly from adjuvant 
chemotherapy. The model demonstrated good predictive 
performance, with a C-index of 0.68 for OS and 0.69 
for RFS in both training and test sets. These findings 
highlight the utility of incorporating clinicopathologic 
data into predictive models to guide adjuvant 
chemotherapy decisions and improve patient outcomes
	 Shifting focus to imaging data and biological 
response, Zhu et al. developed a ML model using 
pre- and post-chemotherapy MRI images to predict 
pathological tumor regression grade (TRG) in CRLM 
patients (77). The study included 180 patients (389 
lesions) divided into training, test, and external validation 
sets. Implemented with TensorFlow and Keras, the 
model utilized multi-stream inputs and center cropping 
to enhance CNN performance. Three models with 
varying input streams were compared: Model A (four 
input streams), Model B (pre-treatment images), and 
Model C (post-treatment images). Model A achieved the 
highest AUC (0.849) with the training set, significantly 
outperforming Models B, C (p = 0.04), and RECIST 
(p = 0.03). In external validation, Model A maintained 
superior performance (AUC: 0.833, accuracy: 0.885) 
compared to RECIST (AUC: 0.558, accuracy: 0.533). 
Additionally, Model A effectively stratified survival 

outcomes, while RECIST-defined groups displayed no 
significant differences (DFS and OS, p = 0.12, p = 0.99). 
The aforementioned study underscores the potential of 
CNN-based models in improving chemotherapy response 
prediction and survival stratification over conventional 
RECIST assessments.
	 Giannini et al. utilized imaging data to predict 
treatment responses in HER2-amplified CRLM patients 
receiving HER2 dual-targeted therapy (78). The study 
included CT data from 38 patients and 141 metastatic 
lesions, with 28 patients (108 lesions) in the training set 
and 10 patients (33 lesions) in the validation set. The 
authors extracted 24 radiomic features from CT images 
and applied a Gaussian Naïve Bayes (GNB) classifier 
for feature selection, ultimately retaining 12 significant 
features. The GNB model performed better on the 
training set compared to the validation set, particularly 
in sensitivity (training: a sensitivity of 0.89, a specificity 
of 0.85; validation: a sensitivity of 0.90, a specificity 
of 0.42). The model correctly classified 24 of the 38 
patients, partially misclassified 12, and completely 
misclassified 2. The authors noted that while the model 
effectively predicted responsive lesions (R+), it struggled 
to accurately identify non-responsive lesions (R-). 
The aforementioned study underscores the potential 
of radiomic feature-based models to predict treatment 
response in HER2-targeted therapies, while highlighting 
challenges in generalizability and specificity.
	 Together, these studies demonstrate the pivotal role of 
ML models in guiding clinical decisions and optimizing 
treatment strategies for CRLM. By improving the 
accuracy of therapeutic response predictions, stratifying 
patients based on clinical and molecular characteristics, 
and integrating multi-modal data, these models are 
driving precision oncology forward.

4.2. Patient prognostic stratification

ML has significantly enhanced prognostic stratification 
for CRLM patients, utilizing diverse data types to 
improve survival predictions and patient management. 
From imaging-based models to multi-modal approaches, 
these studies illustrate the versatility of ML in addressing 
clinical challenges.
	 Wang et al. developed an unsupervised ML model 
based on preoperative CT imaging and clinical data to 
stratify survival risks in 197 CRLM patients (79). Using 
hierarchical clustering, the study filtered imaging features 
from 851 to 56 through Cox regression and divided 
patients into favorable and poor prognosis groups, with 
the latter exhibiting an OS HR of 1.78 (95% CI: 1.12–
2.83). The model outperformed CRS and TBS scores 
in predicting long-term survival, with a time-dependent 
AUC of 0.66 compared to 0.58 and 0.55, respectively.
	 Building on this, Paro et al. used a tumor burden-
focused ML model, ML-TB, to optimize thresholds for 
tumor size and number, maximizing five-year survival 
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stratification (80). The study analyzed 1,344 patients 
from five centers and noted superior OS stratification 
compared to conventional Fong scores, with Cohen's d 
values of 1.61, 0.84, and 2.73, highlighting the model's 
ability to redefine tumor burden parameters for better 
clinical outcomes.
	 In a similar vein, Lam et al. incorporated lasso 
regression and Cox models to identify key predictors 
from 36 clinical variables in 572 patients (81). Variables 
such as CEA levels, tumor size, and KRAS mutation 
status were critical for OS and RFS predictions, 
achieving a concordance index of 0.651 and significantly 
outperforming Fong CRS in one- and five-year OS 
predictions. This comprehensive analysis underscores 
the importance of integrating clinicopathologic and 
molecular data into ML models for precise risk 
stratification.
	 Adding a histopathological dimension, Elforaici 
et al. used deep learning frameworks with GANs and 
Vision Transformers to analyze 1,620 pathology slides 
from 258 patients (82). The model extracted tumor and 
peritumoral features, achieving a c-index of 0.804 for OS 
and 0.735 for time-to-recurrence. By using multi-task 
deep learning, this approach demonstrated the potential 
to enhance prognostic precision through advanced 
histological insights.
	 Moro et al. utilized a classification and regression 
tree (CART) model to identify risk factors for CRLM 
prognosis in 1,123 patients (83). Based on demographic 
and clinicopathologic data, the model revealed distinct 
survival profiles for wtKRAS and mtKRAS patients. 
For instance, wtKRAS patients with small (<4.3 cm) 
solitary metastases and no nodal involvement exhibited 
the highest five-year OS (68.5%). The CART model also 
outperformed conventional Fong scores, and particularly 
for wtKRAS patients (AIC 3334 vs. 3341).
	 Incorporating imaging and molecular characteristics, 
Saber et al. utilized an attention-based TabNet model to 
predict levels of CD73 expression in 122 patients (84). 
By integrating immunofluorescence and CT data, the 
model achieved an AUC of 0.95 and yielded significant 
prognostic implications, with high levels of CD73 
expression linked to shorter recurrence (13.0 vs. 23.6 
months, p: 0.0098) and disease-specific survival (53.4 
vs. 126.0 months, p: 0.0222). The aforementioned study 
emphasizes the role of molecular markers in stratifying 
treatment responses and outcomes.
	 Expanding the focus to targeted therapy, Zhou et al. 
developed the DERBY+ model to predict bevacizumab 
response using PET-CT and clinical data (85). Trained 
on multi-center cohorts, the model achieved an AUC 
of 0.95 with independent datasets, outperforming 
individual predictors such as clinical (AUC: 0.66) and 
imaging features (AUC: 0.72). The identified responders 
exhibited prolonged OS (27.6 vs. 18.5 months, p = 0.010), 
underscoring the utility of integrated ML frameworks for 
precision oncology.

	 Turning to recurrence prediction, Zhao et al. 
designed a hybrid DLM combining 2D-CNN, Bi-LSTM, 
and attention modules to predict early recurrence after 
thermal ablation (86). Analyzing 13,248 ultrasound 
images and clinical data from 207 patients, the combined 
model achieved an AUC of 0.78 and demonstrated 
significant prognostic stratification. Notably, the DL 
model consistently outperformed clinical models in all 
datasets, with significantly lower false-positive rates and 
better high-risk group identification (p < 0.001).
	 In the realm of disease-free survival prediction, Luo 
et al. compared elastic net (EN) and random survival 
forest (RSF) models using contrast-enhanced CT 
imaging data from 180 patients (87). The EN model 
outperformed RSF in the test set (C-index = 0.78), while 
RSF excelled in the training set (C-index = 0.74). Both 
models effectively stratified DFS outcomes, illustrating 
the complementarity of regression- and forest-based 
approaches in survival analysis.
	 Finally, Amygdalos et al. developed a gradient-
boosted decision tree model to predict OS in 487 CRLM 
patients (88). By focusing on six top-ranked predictors, 
such as CEA levels and metastatic lesion size, the 
GBDT-Top6 model achieved a superior C-index of 0.70, 
outperforming the original GBDT (C-index: 0.65). This 
highlights the potential of feature selection in enhancing 
ML model performance and clinical interpretability.
	 Together, these studies underscore the transformative 
potential of ML in CRLM prognostic stratification. By 
integrating diverse data sources and using cutting-edge 
algorithms, these models will pave the way for more 
personalized and effective patient care.
	 In conclusion, ML has advanced clinical decision-
making and prognostic stratification for CRLM patients 
by integrating clinical, imaging, and molecular data. 
Techniques such as RFs, regression trees, and deep 
learning have demonstrated effectiveness in predicting 
chemotherapy responses, stratifying survival risks, and 
enhancing prognostic accuracy. These advances highlight 
AI's potential to optimize personalized treatment and 
improve patient outcomes in CRLM management.

4. Conclusion

AI has shown great promise in classifying and managing 
CRLM, yet challenges remain in its clinical integration. 
The complexity of multimodal data, limited access 
to large annotated datasets, and ethical concerns such 
as data privacy and model transparency hinder their 
widespread use. Additionally, CRLM's biological 
heterogeneity requires AI models that are both adaptive 
and interpretable.
	 To overcome these barriers, future research should 
focus on federated learning to enable secure multi-
institution collaboration, self-supervised and transfer 
learning to reduce dependence on labeled data, and 
improved model interpretability to enhance clinical 
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trust. Longitudinal studies integrating AI into real-world 
workflows will be essential for validation.
	 Despite these challenges, AI is transforming CRLM 
management by integrating clinical, imaging, and omics 
data for personalized treatment strategies. Advancing AI-
driven solutions through interdisciplinary collaboration 
will further enhance precision medicine, optimizing 
outcomes for CRLM patients.

Funding: This work was supported by the Shanghai 
Natural Science Foundation Project (22ZR1413300), 
the National Natural Science Foundation of China 
(81874056, 81874182), the National Key Research 
and Development Plan of the Ministry of Science 
and Technology (2022YFE0125300), and the Public 
Health Bureau Foundation of Shanghai (202240240, 
201940043).

Conflict of Interest: The authors have no conflicts of 
interest to disclose.

References

1.	 Sung H , F e r l ay J , S i ege l RL , Lave r sanne M, 
Soerjomataram I, Jemal A, Bray F. Global Cancer 
Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. CA 
Cancer J Clin. 2021; 71:209-249.

2.	 Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia 
J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal 
cancer: Rationale, challenges and potential. Nat Rev 
Gastroenterol Hepatol. 2019; 16:361-375.

3.	 Chen Q, Chen J, Deng Y, Bi X, Zhao J, Zhou J, Huang Z, 
Cai J, Xing B, Li Y, Li K, Zhao H. Personalized prediction 
of postoperative complication and survival among 
colorectal liver metastases patients receiving simultaneous 
resection using machine learning approaches: A multi-
center study. Cancer Lett. 2024; 593:216967.

4.	 Rompianesi G, Pegoraro F, Ceresa CD, Montalti R, 
Troisi RI. Artificial intelligence in the diagnosis and 
management of colorectal cancer liver metastases. World J 
Gastroenterol. 2022; 28:108-122.

5.	 Wu X, Li W, Tu H. Big data and artificial intelligence in 
cancer research. Trends Cancer. 2024; 10:147-160.

6.	 Joshi RM, Telang B, Soni G, Khalife A. Overview of 
perspectives on cancer, newer therapies, and future 
directions. Oncol Transl Med. 2024; 10:105-109.

7.	 Yu C, Shi Z, Zhou G, Chang X. Revisiting the survival 
paradox between stage IIB/C and IIIA colon cancer. Sci 
Rep. 2024; 14:22133.

8.	 Vermeulen PB, Colpaert C, Salgado R, Royers R, 
Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix 
LY, Van Marck E. Liver metastases from colorectal 
adenocarcinomas grow in three patterns with different 
angiogenesis and desmoplasia. J Pathol. 2001; 195:336-
342.

9.	 van Dam PJ, van der Stok EP, Teuwen LA, et al . 
International consensus guidelines for scoring the 
histopathological growth patterns of liver metastasis. Br J 
Cancer. 2017; 117:1427-1441.

10.	 Falcão D, Alexandrino H, Caetano Oliveira R, Martins 
J, Ferreira L, Martins R, Serôdio M, Martins M, Tralhão 

JG, Cipriano MA, Castro E Sousa F. Histopathologic 
patterns as markers of prognosis in patients undergoing 
hepatectomy for colorectal cancer liver metastases 
- Pushing growth as an independent risk factor for 
decreased survival. Eur J Surg Oncol. 2018; 44:1212-
1219.

11.	 Galjart B, Nierop PMH, van der Stok EP, van den Braak 
RRJC, Höppener DJ, Daelemans S, Dirix LY, Verhoef C, 
Vermeulen PB, Grünhagen DJ. Angiogenic desmoplastic 
histopathological growth pattern as a prognostic marker of 
good outcome in patients with colorectal liver metastases. 
Angiogenesis. 2019; 22:355-368.

12.	 Takasu C, Morine Y, Yoshikawa K, Tokunaga T, Nishi M, 
Kashihara H, Wada Y, Yoshimoto T, Shimada M. Impact 
of pure desmoplastic histological growth patterns in 
colorectal liver metastasis. BMC Cancer. 2024; 24:1528.

13.	 Lazaris A, Amri A, Petrillo SK, Zoroquiain P, Ibrahim 
N, Salman A, Gao ZH, Vermeulen PB, Metrakos P. 
Vascularization of colorectal carcinoma liver metastasis: 
Insight into stratification of patients for anti-angiogenic 
therapies. J Pathol Clin Res. 2018; 4:184-192.

14.	 Cunningham JM, Kim CY, Christensen ER, Tester DJ, 
Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid 
DJ, Walsh Vockley C, Kubly V, Nelson H, Michels VV, 
Thibodeau SN. The frequency of hereditary defective 
mismatch repair in a prospective series of unselected 
colorectal carcinomas. Am J Hum Genet. 2001; 69:780-
790.

15.	 Venderbosch S, Nagtegaal ID, Maughan TS, et al. 
Mismatch repair status and BRAF mutation status in 
metastatic colorectal cancer patients: A pooled analysis of 
the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin 
Cancer Res. 2014; 20:5322-5330.

16.	 Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH, 
Agarwal A, Maru DM, Sieber O, Desai J. Impact of BRAF 
mutation and microsatellite instability on the pattern of 
metastatic spread and prognosis in metastatic colorectal 
cancer. Cancer. 2011; 117:4623-4632.

17.	 Overman MJ, McDermott R, Leach JL, et al. Nivolumab 
in patients with metastatic DNA mismatch repair-deficient 
or microsatellite instability-high colorectal cancer 
(CheckMate 142): An open-label, multicentre, phase 2 
study. Lancet Oncol. 2017; 18:1182-1191.

18.	 Overman MJ, Lonardi S, Wong KYM, et al. Durable 
clinical benefit with nivolumab plus ipilimumab in DNA 
mismatch repair-deficient/microsatellite instability-high 
metastatic colorectal cancer. J Clin Oncol. 2018; 36:773-
779.

19.	 André T, Shiu KK, Kim TW, et al. Pembrolizumab in 
microsatellite-instability-high advanced colorectal cancer. 
N Engl J Med. 2020; 383:2207-2218.

20.	 Bi F, Dong J, Jin C, et al. Iparomlimab (QL1604) in 
patients with microsatellite instability-high (MSI-H) 
or mismatch repair-deficient (dMMR) unresectable or 
metastatic solid tumors: A pivotal, single-arm, multicenter, 
phase II trial. J Hematol Oncol. 2024; 17:109.

21.	 Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors 
with mismatch-repair deficiency. N Engl J Med. 2015; 
372:2509-2520.

22.	 Kawazoe A, Xu RH, García-Alfonso P, et al. Lenvatinib 
plus pembrolizumab versus standard of care for previously 
treated metastatic colorectal cancer: Final analysis of the 
randomized, open-label, Phase III LEAP-017 study. J Clin 
Oncol. 2024; 42:2918-2927.

23.	 AJCC Cancer Staging Handbook. https://link.springer.

(161)



BioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.com

com/book/9780387884424 (accessed February 1, 2025)
24.	 Sobin LH, Gospodarowicz MK, Wittekind C, eds. TNM 

Classification of Malignant Tumours. 8th ed. Wiley-
Blackwell, Oxford, UK, 2017.

25.	 Weiser MR. AJCC 8th Edition: Colorectal Cancer. Ann 
Surg Oncol. 2018; 25:1454-1455.

26.	 Jin X, Wu Y, Feng Y, Lin Z, Zhang N, Yu B, Mao A, 
Zhang T, Zhu W, Wang L. A population-based predictive 
model identifying optimal candidates for primary and 
metastasis resection in patients with colorectal cancer with 
liver metastatic. Front Oncol. 2022; 12:899659.

27.	 Takeda Y, Mise Y, Matsumura M, Hasegawa K, Yoshimoto 
J, Imamura H, Noro T, Yamamoto J, Ishizuka N, Inoue 
Y, Ito H, Takahashi Y, Saiura A. Accuracy of modern 
clinical risk score including RAS status changes based on 
whether patients received perioperative chemotherapy for 
colorectal liver metastases. World J Surg. 2021; 45:2176-
2184.

28.	 Brudvik KW, Jones RP, Giuliante F, et al. RAS mutation 
clinical risk score to predict survival after resection of 
colorectal liver metastases. Ann Surg. 2019; 269:120-126.

29.	 Katipally RR, Martinez CA, Pugh SA, Bridgewater 
JA, Primrose JN, Domingo E, Maughan TS, Talamonti 
MS, Posner MC, Weichselbaum RR, Pitroda SP; with 
the S:CORT Consortium. Integrated cinical-molecular 
classification of colorectal liver metastases: A biomarker 
analysis of the Phase 3 new EPOC randomized clinical 
trial. JAMA Oncol. 2023; 9:1245-1254.

30.	 Cortes C, Vapnik V. Support-vector networks. Mach 
Learn. 1995; 20:273-297.

31.	 Sun T, Wang J, Li X, Lv P, Liu F, Luo Y, Gao Q, Zhu 
H, Guo X. Comparative evaluation of support vector 
machines for computer aided diagnosis of lung cancer 
in CT based on a multi-dimensional data set. Comput 
Methods Programs Biomed. 2013; 111:519-524.

32.	 Chu F, Wang L. Applications of support vector machines 
to cancer classification with microarray data. Int J Neural 
Syst. 2005; 15:475-484.

33.	 Breiman L. Random forests. Mach Learn. 2001; 45:5-32.
34.	 Zare A, Postovit LM, Githaka JM. Robust inflammatory 

breast cancer gene signature using nonparametric random 
forest analysis. Breast Cancer Res. 2021; 23:92.

35.	 Verschuur AVD, Hackeng WM, Westerbeke F, et al. DNA 
methylation profiling enables accurate classification 
of nonductal primary pancreatic neoplasms. Clin 
Gastroenterol Hepatol. 2024; 22:1245-1254.e10.

36.	 Cox D. Regression models and life-tables. J R Stat Soc 
Ser B-Stat Methodol. 1972; 34:187-220.

37.	 Tibshirani R. Regression shrinkage and selection via the 
lasso. J R Stat Soc Ser B (Methodol). 1996; 58:267-288.

38.	 Liu Z, Lin C, Suo C, Zhao R, Jin L, Zhang T, Chen X. 
Metabolic dysfunction-associated fatty liver disease 
and the risk of 24 specific cancers. Metabolism. 2022; 
127:154955.

39.	 Li J, Wang Y, Song X, Xiao H. Adaptive multinomial 
regression with overlapping groups for multi-class 
classification of lung cancer. Comput Biol Med. 2018; 
100:1-9.

40.	 Friedman JH. Greedy function approximation: A gradient 
boosting machine. Ann Stat. 2001; 29:1189-1232.

41.	 Rodriguez LA, Schmittdiel JA, Liu L, Macdonald BA, 
Balasubramanian S, Chai KP, Seo SI, Mukhtar N, Levin 
TR, Saxena V. Hepatocellular carcinoma in metabolic 
dysfunction-associated steatotic liver disease. JAMA Netw 
Open. 2024; 7:e2421019.

42.	 Qi X, Wang S, Fang C, Jia J, Lin L, Yuan T. Machine 
learning and SHAP value interpretation for predicting 
comorbidity of cardiovascular disease and cancer with 
dietary antioxidants. Redox Biol. 2024; 79:103470.

43.	 Wang C, Long Y, Li W, Dai W, Xie S, Liu Y, Zhang 
Y, Liu M, Tian Y, Li Q, Duan Y. Exploratory study on 
classification of lung cancer subtypes through a combined 
K-nearest neighbor classifier in breathomics. Sci Rep. 
2020; 10:5880.

44.	 Li Q, Hao C, Kang X, Zhang J, Sun X, Wang W, Zeng 
H. Colorectal cancer and colitis diagnosis using Fourier 
transform infrared spectroscopy and an improved 
k-nearest-neighbour classifier. Sensors (Basel). 2017; 
17:2739.

45.	 Khan RA, Fu M, Burbridge B, Luo Y, Wu FX. A multi-
modal deep neural network for multi-class liver cancer 
diagnosis. Neural Netw. 2023; 165:553-561.

46.	 Cho SI, Sun S, Mun JH, Kim C, Kim SY, Cho S, Youn 
SW, Kim HC, Chung JH. Dermatologist-level classification 
of malignant lip diseases using a deep convolutional 
neural network. Br J Dermatol. 2020; 182:1388-1394.

47.	 Chang X, Wang J, Zhang G, Yang M, Xi Y, Xi C, Chen 
G, Nie X, Meng B, Quan X. Predicting colorectal cancer 
microsatellite instability with a self-attention-enabled 
convolutional neural network. Cell Rep Med. 2023; 
4:100914.

48.	 Hopfield JJ. Neural networks and physical systems with 
emergent collective computational abilities. Proc Natl 
Acad Sci U S A. 1982; 79:2554-2558.

49.	 Hochreiter S, Schmidhuber J. Long short-term memory. 
Neural Comput. 1997; 9:1735-1780.

50.	 Yun G, Vyas K, Yang J, Yang GZ. Transfer recurrent 
feature learning for endomicroscopy image recognition. 
IEEE Trans Med Imaging. 2019; 38:791-801.

51.	 Cheng CL, Md Nasir ND, Ng GJZ, et al. Artificial 
intelligence modelling in differentiating core biopsies of 
fibroadenoma from phyllodes tumor. Lab Invest. 2022; 
102:245-252.

52.	 Xin C, Liu Z, Zhao K, Miao L, Ma Y, Zhu X, Zhou Q, 
Wang S, Li L, Yang F, Xu S, Chen H. An improved 
transformer network for skin cancer classification. 
Comput Biol Med. 2022; 149:105939.

53.	 Xu H, Usuyama N, Bagga J, et al . A whole-slide 
foundation model for digital pathology from real-world 
data. Nature. 2024; 630:181-188.

54.	 Qian X, Pei J, Han C, et al. A multimodal machine 
learning model for the stratification of breast cancer risk. 
Nat Biomed Eng. 2025; 9:356-370.

55.	 Schirris Y, Gavves E, Nederlof I, Horlings HM, Teuwen 
J. DeepSMILE: Contrastive self-supervised pre-training 
benefits MSI and HRD classification directly from H&E 
whole-slide images in colorectal and breast cancer. Med 
Image Anal. 2022; 79:102464.

56.	 Zhang H, AbdulJabbar K, Grunewald T, et al. Self-
supervised deep learning for highly efficient spatial 
immunophenotyping. EBioMedicine. 2023; 95:104769.

57.	 Tharmaseelan H, Vellala AK, Hertel A, Tollens F, Rotkopf 
LT, Rink J, Woźnicki P, Ayx I, Bartling S, Nörenberg D, 
Schoenberg SO, Froelich MF. Tumor classification of 
gastrointestinal liver metastases using CT-based radiomics 
and deep learning. Cancer Imaging. 2023; 23:95.

58.	 Jia W, Li F, Cui Y, Wang Y, Dai Z, Yan Q, Liu X, Li Y, 
Chang H, Zeng Q. Deep learning radiomics model of 
contrast-enhanced CT for differentiating the primary 
source of liver metastases. Acad Radiol. 2024; 31:4057-

(162)



BioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.com

4067.
59.	 Höppener DJ, Aswolinskiy W, Qian Z, Tellez D, Nierop 

PMH, Starmans M, Nagtegaal ID, Doukas M, de Wilt 
JHW, Grünhagen DJ, van der Laak JAWM, Vermeulen 
P, Ciompi F, Verhoef C. Classifying histopathological 
growth patterns for resected colorectal liver metastasis 
with a deep learning analysis. BJS Open. 2024; 8:zrae127.

60.	 Starmans MPA, Buisman FE, Renckens M, Willemssen 
FEJA, van der Voort SR, Groot Koerkamp B, Grünhagen 
DJ, Niessen WJ, Vermeulen PB, Verhoef C, Visser JJ, 
Klein S. Distinguishing pure histopathological growth 
patterns of colorectal liver metastases on CT using deep 
learning and radiomics: A pilot study. Clin Exp Metastasis. 
2021; 38:483-494.

61.	 Wesdorp N, Zeeuw M, van der Meulen D, et al . 
Identifying genetic mutation status in patients with 
colorectal cancer liver metastases using radiomics-
based machine-learning models. Cancers (Basel). 2023; 
15:5648.

62.	 Granata V, Fusco R, Setola SV, Brunese MC, Di Mauro 
A, Avallone A, Ottaiano A, Normanno N, Petrillo A, Izzo 
F. Machine learning and radiomics analysis by computed 
tomography in colorectal liver metastases patients for 
RAS mutational status prediction. Radiol Med. 2024; 
129:957-966.

63.	 Li M, Li X, Guo Y, Miao Z, Liu X, Guo S, Zhang H. 
Development and assessment of an individualized 
nomogram to predict colorectal cancer liver metastases. 
Quant Imaging Med Surg. 2020; 10:397-414.

64.	 Kim K, Kim S, Han K, Bae H, Shin J, Lim JS. Diagnostic 
performance of deep learning-based lesion detection 
algorithm in CT for detecting hepatic metastasis from 
colorectal cancer. Korean J Radiol. 2021; 22:912-921.

65.	 Yu Z, Li G, Xu W. Rapid detection of liver metastasis risk 
in colorectal cancer patients through blood test indicators. 
Front Oncol. 2024; 14:1460136.

66.	 Kiritani S, Yoshimura K, Arita J, Kokudo T, Hakoda H, 
Tanimoto M, Ishizawa T, Akamatsu N, Kaneko J, Takeda S, 
Hasegawa K. A new rapid diagnostic system with ambient 
mass spectrometry and machine learning for colorectal 
liver metastasis. BMC Cancer. 2021; 21:262.

67.	 Moosavi SH, Eide PW, Eilertsen IA, Brunsell TH, 
Berg KCG, Røsok BI, Brudvik KW, Bjørnbeth BA, 
Guren MG, Nesbakken A, Lothe RA, Sveen A. De 
novo transcriptomic subtyping of colorectal cancer liver 
metastases in the context of tumor heterogeneity. Genome 
Med. 2021; 13:143.

68.	 Nemlander E, Ewing M, Abedi E, Hasselström J, Sjövall 
A, Carlsson AC, Rosenblad A. A machine learning tool 
for identifying non-metastatic colorectal cancer in primary 
care. Eur J Cancer. 2023; 182:100-106.

69.	 Krishnan ST, Winkler D, Creek D, Anderson D, Kirana C, 
Maddern GJ, Fenix K, Hauben E, Rudd D, Voelcker NH. 
Staging of colorectal cancer using lipid biomarkers and 
machine learning. Metabolomics. 2023; 19:84.

70.	 Li J, Wang X, Cai L, Sun J, Yang Z, Liu W, Wang Z, Lv H. 
An interpretable deep learning framework for predicting 
liver metastases in postoperative colorectal cancer patients 
using natural language processing and clinical data 
integration. Cancer Med. 2023; 12:19337-19351.

71.	 Karagkounis G, Horvat N, Danilova S, et al. Computed 
tomography-based radiomics with machine learning 
outperforms radiologist assessment in estimating 
colorectal liver metastases pathologic response after 
chemotherapy. Ann Surg Oncol. 2024; 31:9196-9204.

72.	 Maaref A, Romero FP, Montagnon E, Cerny M, Nguyen B, 
Vandenbroucke F, Soucy G, Turcotte S, Tang A, Kadoury S. 
Predicting the response to FOLFOX-based chemotherapy 
regimen from untreated liver metastases on baseline CT: 
A deep neural network approach. J Digit Imaging. 2020; 
33:937-945.

73.	 Davis JMK, Niazi MKK, Ricker AB, Tavolara TE, 
Robinson JN, Annanurov B, Smith K, Mantha R, Hwang J, 
Shrestha R, Iannitti DA, Martinie JB, Baker EH, Gurcan 
MN, Vrochides D. Predicting response to neoadjuvant 
chemotherapy for colorectal liver metastasis using deep 
learning on prechemotherapy cross-sectional imaging. J 
Surg Oncol. 2024; 130:93-101.

74.	 Qi W, Yang J, Zheng L, Lu Y, Liu R, Ju Y, Niu T, Wang 
D. CT-based radiomics for the identification of colorectal 
cancer liver metastases sensitive to first-line irinotecan-
based chemotherapy. Med Phys. 2023; 50:2705-2714.

75.	 Lu L, Dercle L, Zhao B, Schwartz LH. Deep learning for 
the prediction of early on-treatment response in metastatic 
colorectal cancer from serial medical imaging. Nat 
Commun. 2021; 12:6654.

76.	 Endo Y, Alaimo L, Moazzam Z, et al. Optimal policy 
tree to assist in adjuvant therapy decision-making after 
resection of colorectal liver metastases. Surgery. 2024; 
175:645-653.

77.	 Zhu HB, Xu D, Ye M, Sun L, Zhang XY, Li XT, Nie 
P, Xing BC, Sun YS. Deep learning-assisted magnetic 
resonance imaging prediction of tumor response to 
chemotherapy in patients with colorectal liver metastases. 
Int J Cancer. 2021; 148:1717-1730.

78.	 Giannini V, Rosati S, Defeudis A, et al. Radiomics 
predicts response of individual HER2-amplified colorectal 
cancer liver metastases in patients treated with HER2-
targeted therapy. Int J Cancer. 2020; 147:3215-3223.

79.	 Wang Q, Nilsson H, Xu K, Wei X, Chen D, Zhao D, Hu 
X, Wang A, Bai G. Exploring tumor heterogeneity in 
colorectal liver metastases by imaging: Unsupervised 
machine learning of preoperative CT radiomics features 
for prognostic stratification. Eur J Radiol. 2024; 
175:111459.

80.	 Paro A, Hyer MJ, Tsil imigras DI, Guglielmi A, 
Ruzzenente A, Alexandrescu S, Poultsides G, Aucejo 
F, Cloyd JM, Pawlik TM. Machine learning approach 
to stratifying prognosis relative to tumor burden after 
resection of colorectal liver metastases: An international 
cohort analysis. J Am Coll Surg. 2022; 234:504-513.

81.	 Lam CSN, Bharwani AA, Chan EHY, Chan VHY, 
Au HLH, Ho MK, Rashed S, Kwong BMH, Fang 
W, Ma KW, Lo CM, Cheung TT. A machine learning 
model for colorectal liver metastasis post-hepatectomy 
prognostications. Hepatobiliary Surg Nutr. 2023; 12:495-
506.

82.	 Elforaici MEA, Montagnon E, Romero FP, Le WT, Azzi 
F, Trudel D, Nguyen B, Turcotte S, Tang A, Kadoury S. 
Semi-supervised ViT knowledge distillation network with 
style transfer normalization for colorectal liver metastases 
survival prediction. Med Image Anal. 2025; 99:103346.

83.	 Moro A, Mehta R, Tsilimigras DI, Sahara K, Paredes AZ, 
Bagante F, Guglielmi A, Alexandrescu S, Poultsides GA, 
Sasaki K, Aucejo FN, Pawlik TM. Prognostic factors differ 
according to KRAS mutational status: A classification and 
regression tree model to define prognostic groups after 
hepatectomy for colorectal liver metastasis. Surgery. 2020; 
168:497-503.

84.	 Saber R, Henault D, Messaoudi N, Rebolledo R, 

(163)



BioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.com

Montagnon E, Soucy G, Stagg J, Tang A, Turcotte S, 
Kadoury S. Radiomics using computed tomography to 
predict CD73 expression and prognosis of colorectal 
cancer liver metastases. J Transl Med. 2023; 21:507.

85.	 Zhou S, Sun D, Mao W, Liu Y, Cen W, Ye L, Liang F, Xu 
J, Shi H, Ji Y, Wang L, Chang W. Deep radiomics-based 
fusion model for prediction of bevacizumab treatment 
response and outcome in patients with colorectal 
cancer liver metastases: A multicentre cohort study. 
EClinicalMedicine. 2023; 65:102271.

86.	 Zhao QX, He XL, Wang K, Cheng ZG, Han ZY, 
Liu FY, Yu XL, Hui Z, Yu J, Chao A, Liang P. Deep 
learning model based on contrast-enhanced ultrasound 
for predicting early recurrence after thermal ablation 
of colorectal cancer liver metastasis. Eur Radiol. 2023; 
33:1895-1905.

87.	 Luo X, Deng H, Xie F, Wang L, Liang J, Zhu X, Li T, 
Tang X, Liang W, Xiang Z, He J. Prognostication of 
colorectal cancer liver metastasis by CE-based radiomics 
and machine learning. Transl Oncol. 2024; 47:101997.

88.	 Amygdalos I, Müller-Franzes G, Bednarsch J, Czigany 
Z, Ulmer TF, Bruners P, Kuhl C, Neumann UP, Truhn D, 
Lang SA. Novel machine learning algorithm can identify 
patients at risk of poor overall survival following curative 
resection for colorectal liver metastases. J Hepatobiliary 
Pancreat Sci. 2023; 30:602-614.

Received February 2, 2025; Revised March 30, 2025; Accepted 
April 12, 2025.

§These authors contributed equally to this work.
*Address correspondence to:
Lu Wang and Weiping Zhu, Department of Hepatic Surgery, 
Fudan University Shanghai Cancer Center, Shanghai Medical 
College, Fudan University, Shanghai 200032, China.
E-mail: wangluzl@fudan.edu.cn (LW), wpzhush@hotmail.com 
(WZ)

Released online in J-STAGE as advance publication April 15, 
2025.

(164)



BioScience Trends. 2025; 19(2):165-172.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):165-172.                                                  www.biosciencetrends.com

Advances in research on receptor heterogeneity in breast cancer 
liver metastasis

Qinyu Liu1,2,§, Runze Huang1,2,§, Xin Jin1,2, Xuanci Bai3, Wei Tang4,5, Lu Wang1,2,
Kenji Karako4,*, Weiping Zhu1,2,*

1 Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China;
2 Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China;
3 Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China;
4 Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;
5 National Center for Global Health and Medicine, Japan Institute for Health Security, Tokyo, Japan.

1. Introduction

According to the latest data from the International 
Agency for Research on Cancer (1), breast cancer has 
become the most commonly diagnosed cancer type in 
women worldwide, surpassing lung cancer. The latest 
statistics from the American Cancer Society show that 
the incidence of breast cancer has been continuously 
rising and those affected have become younger over the 
past decade (2). The survival rate of breast cancer varies 
depending on the stage at diagnosis, molecular subtypes, 
and other clinical pathological characteristics, with a 
5-year relative survival rate of 99% for localized disease 
and only 32% for distant metastatic disease (2). Distant 
metastasis of breast cancer is the leading cause of death 
in patients with breast cancer. The liver ranks among the 
primary targets of breast cancer metastasis. In patients 
with advanced breast cancer, liver metastasis occurs in 
20-30% of cases. This makes the liver the third most 
common site of distant metastasis, following bone and 

the lungs (3,4). Notably, breast cancer liver metastasis 
(BCLM) also tends to develop at a younger age, with 
a higher incidence of liver metastatic breast cancer in 
young women compared to older women (5,6). Thus, 
focusing on the prognosis for patients with BCLM is 
crucial.
	 Based on molecular biological characteristics, 
breast cancer can be classified into Luminal A, Luminal 
B, Triple-negative, HER2-positive, and HER2-
negative types. The status of estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2) is crucial in guiding 
clinical treatment decisions (7). The American Society 
of Clinical Oncology (ASCO) and the European Society 
for Medical Oncology (ESMO) have recently updated 
their clinical practice guidelines for metastatic breast 
cancer. These updates emphasize receptor-dependent 
treatment strategies, similar to those used for in situ 
breast cancer. Specifically, they recommend formulating 
personalized treatment plans based on the receptor status 
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SUMMARY: Breast cancer liver metastasis (BCLM) presents a critical challenge in breast cancer treatment and 
has substantial epidemiological and clinical significance. Receptor status is pivotal in managing both primary breast 
cancer and its liver metastases. Moreover, shifts in these statuses can have a profound impact on patient treatment 
strategies and prognoses. Research has indicated that there is significant heterogeneity in receptor status between 
primary breast cancer and liver metastases. This variation may be influenced by a multitude of factors, such as 
therapeutic pressure, inherent tumor heterogeneity, clonal evolution, and the unique microenvironment of the liver. 
Changes in the receptor status of BCLM are crucial for adjusting treatment strategies, and liver biopsy plays an 
important role in the treatment process. Directions for future research targeting changes in receptor status include 
in-depth study of molecular mechanisms, combined treatment strategies for receptor status reversal, development 
of artificial intelligence deep learning models to predict receptor status in liver metastases, and clinical research on 
new drug development and combination therapies. That research will provide more precise treatment strategies for 
patients with BCLM and improve their prognosis.
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of liver metastases. This approach ensures that treatment 
is tailored to the specific characteristics of the metastatic 
disease, potentially improving outcomes for patients with 
BCLM (8,9).
	 Clinical research has demonstrated that there is a 
certain degree of expression discrepancy in ER, PR, 
and HER2 between primary breast cancer and liver 
metastases (10-12). Therefore, re-evaluating the receptor 
status of BCLM is crucial to formulating precise 
personalized treatment plans. The molecular mechanisms 
of and new drug targets associated with changes in the 
receptor status of BCLM need to be urgently examined. 
The current review meticulously synthesizes recent 
research findings to provide a summary of the situation 
and potential factors influencing receptor heterogeneity 
in BCLM. It also delves into the impact of these 
factors on the development of diagnostic and treatment 
strategies. Additionally, it explores and discusses 
promising directions for future research in this critical 
field in order to shed light on new avenues for advancing 
our understanding and management of this complex 
condition.

2. Heterogeneity of receptor status in BCLM

Clinical studies have shown that there is a significant 
degree of temporal and spatial heterogeneity in the 
expression of ER, PR, and HER2 during the process 
of breast cancer metastasis (13-20) (Tables 1 and 2). A 
study by Sundén et al. (10) on a cohort of 132 BCLM 
patients registered in two Swedish national cancer 
registries indicated that the discordance rates for ER, 
PR, and HER2 status between the primary tumor and 
liver metastasis were 17%, 33%, and 10%, respectively; 
among the cases with changes in receptor status, the 
proportion in which ER changed from positive to 
negative was 72.7%, and for PR it was 86.5%. Chen et al. 
(21) assessed a cohort of 390 paired primary and distant 
metastasis cases and found that the discordance rates for 
ER, PR, and HER2 between the primary and metastatic 
sites were 20%, 41.4%, and 14.1%, respectively; among 
all cases with receptor changes in breast cancer distant 

metastasis, the proportion in which ER changed from 
positive to negative was 85.9%, the proportion in which 
PR changed from positive to negative was 77.0%, and 
the proportion in which HER2 changed from positive 
to negative was 56.8%, but this study did not specify 
the individual cases in which each receptor changed 
from positive to negative. A meta-analysis performed 
by Schrijver et al. (11), which encompassed 39 studies, 
revealed notable discordance rates for ER, PR, and 
HER2 of 14.3%, 47.0%, and 12.1%, respectively, in 
BCLM. The researchers further observed that the random 
effect percentages for ER, PR, and HER2 changing from 
positive to negative were 22.5%, 49.4%, and 21.3%, 
respectively. Conversely, the percentages for these 
receptors changing from negative to positive were found 
to be 21.5%, 15.9%, and 9.5%, respectively. Together, 
the aforementioned studies demonstrate that among the 
receptors in BCLM, the discordance rate for PR is the 
highest, while that for HER2 is the lowest. Notably, a 
greater proportion of patients experience a change in 
ER and PR expression from positive to negative, as 
compared to those who undergo a change from negative 
to positive. In contrast, the proportion of patients whose 
HER2 status changes from positive to negative is 
relatively similar to those whose status changes from 
negative to positive.
	 Interestingly, almost all studies on changes in 
receptor status in BCLM have indicated that the 
discordance rate for HER2 is the lowest between the 
primary breast cancer and liver metastasis, but nearly 
one-third of patients with BCLM have their HER2 status 
change from no HER2 expression in the primary tumor 
to low HER2 expression in the liver metastasis (22,23). 
For example, a study by Almstedt et al. (24) showed that 
during the process of BCLM, the discordance rate for 
HER2 status was 40.9%, with 72.2% changing from no 
HER2 expression to low HER2 expression.
	 In addition, certain studies have indicated that 
alterations in HER2 status are intimately linked to the 
patient's ER status. Specifically, a HER2 status of 0 is 
predominantly associated with ER negativity, whereas 
low expression of HER2 tends to occur more frequently 
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Table 1. Breast cancer liver metastasis receptor status conversion

Curigliano et al., 2011
Hoefnagel et al., 2012
Botteri et al., 2012
Nakamura et al., 2013
Woo et al., 2019
Chen et al., 2020
Sundén et al., 2023
Procházková et al., 2024

Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor.

ER

    14.5 (37/255)
12.7 (8/63)

  15.2 (15/99)
-

16.7 (4/24)
  20.0 (16/80)

    16.9 (22/130)
20.0 (2/10)

PR

      48.6 (124/255)
  41.3 (26/63)

-
-

33.3 (8/24)
  41.4 (29/70)

    32.5 (37/114)
40.0 (4/10)

HER2

    14.0 (24/172)
  9.5 (6/63)
13.3 (8/60)
10.0 (2/20)
16.7 (4/24)

  14.1 (10/71)
      9.9 (10/101)

     0 (0/10)

Rate of discrepancy (%)(Event/Sample size)
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in tumors that are ER-positive (22).

3. Factors influencing receptor heterogeneity in 
BCLM

3.1. Selection pressure from treatment

A whole-exome sequencing analysis of primary tumors 
and matched metastases (25) revealed that untreated 
metastases typically originate from the main clone of 
the primary tumor, while treated metastases often harbor 
driver mutations specific to the metastasis, mainly due 
to the selection pressure of drug treatment that causes 
metastases to derive from rare clones in the primary 
tumor. Several studies (26-28) have shown that breast 
cancer patients who have undergone chemotherapy or 
endocrine therapy have a higher rate of changes in ER or 
PR status when they develop distant metastases compared 
to those who have not received drug treatment. Niikura 
et al. (29) investigated the relationship between HER2-
targeted therapy and HER2 changes, and their results 
indicated that the inconsistency between the HER2 
status in primary and metastatic lesions in breast cancer 
is related to whether the patient received chemotherapy. 
Zhao et al. (30) discovered a correlation between 
hormone receptor conversion in distant metastases of 
breast cancer and prior adjuvant endocrine therapy. 
Specifically, over 40% of patients who underwent 
adjuvant endocrine therapy experienced a loss of PR 
in the distant metastases of breast cancer. Additionally, 
more than 20% of patients who had previously received 
adjuvant endocrine therapy exhibited a loss of ER at 
the metastatic sites. In addition, the aforementioned 
study also found a positive correlation between adjuvant 
chemotherapy and the loss of PR at recurrence. These 
statistical results are similar to those of several previous 
statistics (31-33), suggesting that receptor heterogeneity 
in BCLM may be associated with the selection pressure 
of treatment.

3.2. Clonal evolution and tumor heterogeneity

Clonal evolution refers to the process in which some 
mutated subclones expand under the pressure of natural 
selection while others may perish as the tumor cell 
population evolves over time. Sprouffske et al. (34) 
confirmed the clonal evolution process of primary breast 
tumors in the development of metastatic dissemination. 
They achieved this by tracking genetic changes in breast 
cancer tumor xenograft models during metastasis. In 
addition, several studies have proposed that distinct 
tumor microenvironments can exert different selective 
pressures, thereby influencing tumor clonal evolution 
(35,36).
	 Tumor genetic heterogeneity refers to the diversity of 
genetic variations and gene expression patterns among 
different cells within a tumor during its development, 
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which may arise through complex genetic, epigenetic, 
and protein modifications. Genetic heterogeneity within 
tumors has been extensively documented, serving as 
a reflection of potential clonal evolution occurring 
within the tumor (37-44). A clinical study has shown 
that patients with high tumor heterogeneity are more 
likely to have adverse prognostic outcomes (45). In 
the progression of BCLM, the diversity in receptor 
expression status is indicative of the high degree of 
tumor heterogeneity present in the metastatic lesions. A 
study has indicated that there may be subclones in the 
primary breast tumor that cannot be detected by current 
technical means and that changes in receptor status occur 
during the spread to the liver due to various factors (46). 
Moreover, successful BCLM requires multiple steps (47-
50), each of which can produce a population bottleneck, 
leading to differences in receptor status between the 
metastatic and primary lesions.

3.3. Influence of the metastatic microenvironment

Changes in the liver microenvironment may also affect 
receptor heterogeneity in BCLM. These changes, such 
as the presence of inflammatory responses and cytokines 
in BCLM, may influence the phenotype of breast cancer 
tumor cells, including receptor status. For example, 
studies have shown that inflammatory factors such as 
IL-6 may affect cell adhesion and the expression of 
E-cadherin, thereby influencing tumor metastasis and 
receptor status (51,52).

4. Impact of receptor heterogeneity in BCLM on 
treatment strategies

Zhao et al. (30) found that patients experiencing a 
change in hormone receptor status from negative to 
positive tend to have longer survival times than those 
with a persistently hormone receptor-negative status. 
Moreover, multivariate survival analysis has revealed 
that patients whose ER status changes from positive 
to negative face a significantly elevated risk of death 
compared to those with a stable ER-positive status. A 
large cohort study (53) indicated that patients with low 
HER2 expression have improved survival rates compared 
to those with no HER2 expression, regardless of ER 
status. This phenomenon is also reflected in other studies 
(54,55). Clearly, changes in receptor status during the 
progression of breast tumors have a significant impact on 
survival rates. Both the ASCO (56) and the ESMO (57) 
underscore the importance of basing treatment strategies 
for initially diagnosed BCLM on the ER, PR, and HER2 
status of liver metastatic lesions. They also highlight 
the necessity of evaluating other treatment-related 
biomarkers in order to optimize therapeutic approaches. 
Therefore, evaluating the receptor status of BCLM is of 
great clinical significance to guiding the formulation of 
personalized treatment strategies.

	 The liver is one of the primary targets of distant 
metastasis in breast cancer cases. Unfortunately, patients 
with BCLM generally face a rather grim prognosis (58). 
Research by Botteri et al. (15) has shown that early 
BCLM patients (within 3 years) who undergo a liver 
biopsy have higher survival rates than those who do not. 
Compared to other target organs for distant metastasis 
of breast cancer, the liver is relatively accessible for 
biopsy. Thus, a comprehensive and timely assessment 
of the receptor status and related biomarkers of BCLM 
according to the latest clinical practice guidelines is 
crucial to guiding treatment decisions.
	 In response to changes in the receptor status of 
BCLM, the latest clinical practice guidelines state that 
classifying treatment based on molecular subtypes 
remains the general principle. A point worth highlighting 
is that nearly one-third of patients with BCLM exhibit 
a change in HER2 status, changing from no HER2 
expression in the primary lesion to low HER2 expression 
in the liver metastasis. As low HER2-expressing breast 
cancer targets is researched further, this group of patients 
will become a potentially targetable population (59). 
Patients with low HER2-expressing BCLM also have 
new treatment options such as anti-HER2 antibody-drug 
conjugates (ADCs), and studies on the treatment of low 
HER2-expressing advanced breast cancer with the HER2 
ADC drug T-DXd have become a focus of recent clinical 
research (60).

5. Future prospects

5.1. Molecular mechanisms of receptor heterogeneity in 
BCLM

In research on the molecular mechanisms of receptor 
heterogeneity in BCLM, the bidirectional crosstalk 
between ER and HER2 receptors has been widely 
reported in the context of endocrine or anti-HER2 
treatment resistance in hormone receptor-positive and 
HER2-positive breast cancer (61). Studies have found 
that ER expression can modulate the activity of the PI3K 
pathway, thereby influencing the activation of the HER2 
pathway. Conversely, HER2 overexpression, often driven 
by copy number amplification, can lead to the loss of 
ER gene expression. Moreover, multi-omics analysis of 
metastatic luminal-type primary breast tumors has shown 
that the transition from the luminal subtype to the HER2-
enriched subtype is associated with the expression of 
ESR1, basal-like molecules, and the activation of related 
signaling pathways (62-64).
	 Nevertheless, the precise mechanisms driving the 
changes in receptor status between primary breast cancer 
and liver metastasis have yet to be fully understood. The 
precise molecular mechanisms involved in the process 
of breast cancer liver metastasis need to be explored 
further, and that effort will lay the foundation for the 
development of new treatment strategies.
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5.2. Research on the reversal of receptor status in BCLM

Schade et al. (65) examined combined EZH2/AKT 
inhibitor therapy for triple-negative breast cancer 
and found that EZH2 and AKT inhibitors induce the 
expression of GATA3, promoting the transformation 
of triple-negative breast cancer from a basal-like state 
to a luminal-like state. Their findings indicate that the 
receptor status of breast cancer can be reversed under 
certain conditions, but whether the receptor status of 
liver metastases can be reversed and whether the specific 
mechanisms are consistent with those in the primary 
tumor require further research.

5.3. Artificial intelligence deep learning prediction 
models for receptor heterogeneity in BCLM

The advent of deep learning has driven the artificial 
intelligence (AI) revolution, increasing the use of AI in 
predictive modeling. Today, in relation to breast cancer, 
many AI models have been developed. For example, 
Bitencourt et al. used magnetic resonance imaging to 
assess HER2 gene amplification and predict pathological 
response after neoadjuvant chemotherapy in HER2-
positive breast cancer cases (66). Additionally, AI-driven 
digital pathology has demonstrated effectiveness in 
tumor diagnosis and treatment.
	 However, there is still a scarcity of AI models 
specifically tailored to BCLM. Current guidelines 

for BCLM typically recommend re-biopsy of liver 
metastases to re-evaluate their pathological status. 
Nevertheless, some patients with BCLM cannot tolerate 
punctures or surgical procedures. This hampers the 
accurate determination of the receptor status of liver 
metastases in those patients. Therefore, non-invasive 
methods of determining the receptor status of BCLM 
need to be urgently explored. The latest breakthroughs 
in deep learning technology allow algorithms to learn 
from clinical data to predict the receptor status of BCLM 
(67,68). On this basis, researchers can train AI models 
by collecting information on the primary lesion and liver 
metastasis of patients with BCLM to predict the receptor 
status of liver metastases and formulate personalized 
treatment plans based on the predicted receptor status 
(Figure 1).

5.4. New drug development and clinical evaluation

Considering the liver's pivotal role in detoxification and 
drug metabolism, a growing number of conventional 
therapeutics may rapidly lose their efficacy within 
the liver. Future research should therefore focus on 
developing new drugs that target molecular markers 
specific to BCLM, as well as optimizing drug delivery 
routes to the liver (69,70). Additionally, a study has 
found that a high proportion of ER and PR change from 
positive to negative in BCLM (11), that is, there is a high 
proportion of conversion from the luminal subtype to the 

Figure 1. AI-assisted Framework for Predicting Hormone Receptor Status Conversion in Breast Cancer Liver Metastases. This figure 
illustrates the invasive and noninvasive methods for assessing hormone receptor (HR) status in breast cancer liver metastases. The invasive 
approach involves biopsy or surgical procedures to obtain pathological diagnoses of estrogen receptor (ER), progesterone receptor (PR), and 
HER2 status, capturing potential receptor conversions. In contrast, the noninvasive approach uses artificial intelligence to predict HR status 
changes using data from primary breast cancer and imaging of liver metastases, offering a less invasive alternative for clinical decision-making.
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triple-negative subtype, and this has a negative impact 
on patient prognosis. Therefore, new drugs to reverse the 
triple-negative subtype of liver metastases to the luminal 
subtype could be explored and then used to treat those 
metastases based on ER and PR receptors. This approach 
has already yielded promising results in the treatment 
of primary breast cancer (59). However, whether it is 
equally applicable to the treatment of BCLM remains to 
be determined through large-scale clinical studies.

6. Conclusion

In summary, the changes in receptor status of BCLM 
represent a complex and pivotal clinical challenge. These 
changes not only influence the range of treatment options 
available to patients but also have a direct bearing 
on prognosis and survival rates. As we gain a better 
understanding of the molecular mechanisms underlying 
changes in receptor status and as AI technology is 
increasingly used in predictive modeling, we can 
anticipate the development of more precise and targeted 
treatment strategies.
	 Future research must concentrate on combination 
therapies aimed at reversing receptor status, the 
development of novel drugs, and large-scale clinical 
studies to assess the tangible impact of treatment 
modifications on patient survival. These efforts will pave 
the way for more personalized and effective treatment 
plans for individuals suffering from BCLM. Ultimately, 
this will lead to enhanced quality of life and improved 
survival rates for those patients. With ongoing advances 
in research, we eagerly anticipate further breakthroughs 
in the treatment of BCLM. Such progress holds the 
promise of bringing new hope and better outcomes to 
patients affected by this condition.
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1. Introduction

Machine learning (ML) is playing an increasingly 
important role in data processing in clinical care, 
showing great potential for improving patient prognosis 
and optimizing healthcare management. However, a 
data imbalance is prevalent in clinical healthcare data, 
which is mainly evidentin the uneven distribution of 
case samples, where the number of samples for common 
diseases far exceeds that for rare diseases. This imbalance 
may lead to bias in the construction of ML models, 
making the models tend to predict categories with a 
higher frequency of occurrence while ignoring categories 
with smaller sample sizes. This bias not only affects 
the recall and accuracy of the model, but also limits 

the effective application of conventional classification 
algorithms in disease diagnosis, and especially in 
healthcare domains that require precise identification of 
a small number of cases (1).
	 An imbalance in clinical care data is a pervasive 
challenge in healthcare analytics, and especially for 
datasets with skewed class distributions. This issue 
presents significant hurdles in training classifiers for 
predictive modeling tasks, as highlighted by Kumar 
et al.(2). To address this, researchers have delved into 
a variety of solutions, with the Synthetic Minority 
Oversampling Technique (SMOTE) being a prominent 
one. SMOTE aims to enhance the predictive performance 
of ML models by rectifying class imbalances in clinical 
outcome prediction. In a pivotal study by Ishaq et al., 
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SUMMARY: This study investigates the use of machine learning (ML) models combined with a Synthetic Minority 
Over-sampling Technique (SMOTE) and its variants to predict perioperative pressure injuries (PIs) in an imbalanced 
dataset. PIs are a significant healthcare problem, often leading to prolonged hospitalization and increased medical costs. 
Conventional risk assessment scales are limited in their ability to predict PIs accurately, prompting the exploration 
of ML techniques to address this challenge.We utilized data from 7,292 patients admitted to a tertiary care hospital 
in Shanghai between May 2017 and July 2023, with a final dataset of 2,972 patients, including 158 with PIs. Seven 
ML algorithms—Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Extreme Gradient 
Boosting (XGBoost), Extra Trees (ET), K-Nearest Neighbors (KNN), and Decision Trees (DT)—were used in 
conjunction with SMOTE, SMOTE+ENN, Borderline-SMOTE, ADASYN, and GAN to balance the dataset and 
improve model performance.Results revealed significant improvements in model performance when SMOTE and 
its variants were used. For instance, the XGBoost model hadan AUC of 0.996 with SMOTE, compared to 0.800 on 
raw data. SMOTE+ENN and Borderline-SMOTE further enhanced the models' ability to identify minority classes. 
External validation indicatedthat XGBoost, RF, and ET exhibited the highest stability and accuracy, with XGBoost 
having an AUC of 0.977. SHAP analysis revealed that factors such as anesthesia grade, age, and serum albumin 
levels significantly influenced model predictions.In conclusion, integrating SMOTE with ML algorithms effectively 
addressed a data imbalance and improved the prediction of perioperative PIs. Future work should focus on refining 
SMOTE techniques and exploring their application to larger, multi-center datasets to enhance the generalizability of 
these findings, and especially for diseaseswith a lowincidence.

Keywords: machine learning, pressure injuries, SMOTE, predictive modelling, data imbalance
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the emphasis was on refining the survival prediction 
of heart failure patients through the useof SMOTE 
and sophisticated data mining. This studyuseda suite 
of nine classification models, underscoring the critical 
role of mitigating adata imbalanceto bolster the 
predictive accuracy of clinical datasets (3). Parallel 
to this, Goorbergh et al. conducted a case study on 
prediction modeling for ovarian cancer diagnosis. They 
scrutinized the repercussions of imbalance correction 
on the effectivenessof logistic regression models. Their 
findings underscored the potential detrimental effects of 
class imbalance corrections on risk prediction models, 
underscoring the necessity for judicious useof balancing 
techniques toanalyzeclinical data (4). Ridwan et al. 
usedML techniques and SMOTE to uncover patterns 
and risk factors within the Pima Indian diabetes dataset. 
By adeptly using SMOTE to detect diabetes, their study 
significantly advanced the scientific understandingof 
usingML algorithms to analyze clinical data (5). In 
a related vein, Javid et al.tackledthe issue of a class 
imbalance in the early diagnosis of Alzheimer's disease 
based on MRI images. They usedSMOTE to ensure 
an equitable distribution of samples across each class, 
thereby enhancing the performance of deep learning 
models in medical imaging data for disease diagnosis 
(6). This study highlightsthe significance of balancing 
techniques like SMOTE in increasing the effectiveness 
of deep learning models in this area.
	 In summary, a data imbalance is a pervasive 
challenge in ML, and particularly in healthcare datasets 
where minority class samples (e.g., patients with 
pressure injuries, or PIs) are often critical for accurate 
predictions. Various methods of data enhancement 
have been developed to address this issue, each with its 
own strengths and limitations. One of the most widely 
used techniques is SMOTE, which generates synthetic 
samples by interpolating between existing minority class 
samples. While SMOTE has shown significant success 
in improving model performance, other methods such as 
Adaptive Synthetic Sampling (ADASYN), Borderline-
SMOTE, SMOTE+ENN (Edited Nearest Neighbors), 
and Generative Adversarial Networks(GAN) techniques 
have also emerged as promising alternatives. The current 
study aims to explore the effectiveness of these methods 
in predicting perioperative PIs and to compare their 
performance to conventional SMOTE.
	 PIs, also known as pressure ulcers, are a common 
and serious healthcare problem worldwide, leading to 
prolonged hospitalization, poor quality of life, increased 
mortality, and higher medical costs. They are defined 
as localized injuries to the skin and underlying tissue, 
usually over a bony prominence, resulting from pressure 
or a combination of pressure and shear(7). Given the 
preventable nature of these injuries, there is a critical 
need for effective early warning models to assist 
clinicians and nurses in making timely predictions and 
taking preventive action. SMOTE is used to enhance 

the predictive power of the model by balancing the class 
distribution by adding a few class samples to the training 
data, thus improving the model's prediction accuracy for 
PIs (8,9).
	 Conventional risk assessment scales (e.g., the 
Braden, Norton, and Waterlow scales) have been 
widely used but are limited in performance and 
are workload-intensive(10). As a result, artificial 
intelligence algorithms have been explored as they can 
capture patterns in complex data and have advantages 
in predicting time-to-event data, which is a common 
occurrence in clinical practice. ML models for predicting 
various medical outcomes, including PIs, have been 
developed by utilizing large datasets and algorithmic 
learning.
	 Nowadays, there are a growing number of instances 
whereMLis used in medicine, but the small amount of 
data has been a limitation in the aspects related to disease 
prediction, so the main aimof the current study was to 
evaluate the usefulness and effectiveness of the various 
resampling techniques in the prediction of PIs.Thegoal is 
to construct a ML model that can effectively predict PIs 
in emergency patients. To achieve this goal, seven ML 
algorithms were used in combination with the SMOTE 
algorithm and related methodsof extension to deal with 
the data imbalance problem.

2. Materials and Methods

2.1. Model selection

SMOTE is a technique for dealing with imbalanced 
datasets by generating synthetic samples of a few 
classes to balance the category distribution and was 
first proposed by Chawla et al. in 2002. This method 
creates new sample points by interpolating between the 
minority class samples and their k-nearest neighbors, 
thereby increasing sample diversity and reducing the 
risk of overfitting(11). In the current study, the SMOTE 
algorithm was used to enhance the model's ability to 
recognize the minority category (i.e., patients with PIs).
	 The basic steps of the underlying logic are as follows:
	 i) Select a minority sample X as the "root sample"for 
synthesizing a new sample.
	 ii) Find by Euclidean distance the k nearest 
neighboring samples (usually k is odd, e.g., 5) of that 
sample, which also belong to the minority category. 
For two points X("x1,y1,z1,...") and O("x2,y2,z2,...") 
coordinates in n-dimensional space, the Euclidean 
distance d between them can be calculated withthe 
following formula.

	 iii) For each nearest-neighbor sample O, perform 
the following steps to generate a new sample point Onew. 
Calculate the root sample X and its nearest neighbor 
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by minority class samples), Danger (surrounded mostly 
by majority class samples and considered to be on the 
decision boundary), and Noise (surrounded entirely by 
majority class samples). Only Danger samples are used 
to create synthetic samples by selecting neighboring 
minority samples and interpolating between them 
using the same formula as SMOTE. There are two 
variants: Borderline-SMOTE1 generates synthetic 
samples using only minority class neighbors, whereas 
Borderline-SMOTE2 uses any neighbor (regardless of 
class) to introduce more diversity. The key advantage of 
Borderline-SMOTE is its focus on the decision boundary, 
which reduces the risk of generating noisy samples and 
enhances the effectiveness of synthetic samples (14).
	 GANs are advanced generative models that use a 
generator network to create synthetic samples and a 
discriminator network to distinguish between real and 
synthetic samples. GANs can produce high-quality 
synthetic data, potentially improving model performance 
by increasing the diversity of the minority class(15).
	 The current study used seven different ML models to 
predict PIs in emergency patients, each of which has its 
own unique strengths that make them perform well when 
dealing with specific types of data and problems.Support 
Vector Machine (SVM) is effective in dealing with high-
dimensional spatial data and non-linear problems, being 
able to find hyperplanes that maximize the class interval. 
In PI prediction, SVM can help  identify complex 
patterns, and especially when the feature space is 
large(16).Random Forest (RF), as an integrated learning 
method, improves the stability and accuracy of the 
model by constructing multiple decision trees and is very 
resistant to overfitting. When faced with imbalanced 
datasets, RF provides robust predictions and reduces 
the variance of predictions by integrating multiple 
models(17).Extreme Gradient Boosting (XGBoost) 
is an efficient gradient boosting framework that is 
capable of handling large-scale datasets and typically 

samples O: dif = O -X; generate a random number 
between [0, 1] λ: and Use this formula to synthesize the 
value of each attribute of the new sample Onew.

	 iv) Repeat step 3 to produce the required number of 
new samples.
	 The key to the SMOTE algorithm is that instead 
of simply copying existing minority class samples, it 
creates new sample points by interpolating between the 
minority class samples, which increases the diversity 
of the samples and reduces the risk of overfitting. This 
approach is particularly useful in situations where the 
number of minority samples is small but each sample 
is important.A basic diagram of SMOTE is shown in 
Figure 1.
	 Similar to SMOTE, ADASYN generates synthetic 
samples but focuses more on the difficult-to-learn 
regions of the minority class, potentially improving 
model performance(12).
	 SMOTE+ENN is a hybrid technique that combines 
SMOTE with the ENN technique to efficiently deal 
with imbalanced datasets. First, a large amount of 
oversampled data is generated using the SMOTE method 
described above, and then ENN is used to clean the 
dataset by removing noisy samples, ENN works by 
identifying samples whose nearest neighbors belong 
to a different class and removing them. This helps 
toreduce noise and improve the quality of the dataset. 
This approach helps reduce overfitting and enhances the 
model's generalization ability (13).
	 Borderline-SMOTE is an enhanced version of 
SMOTE that generates synthetic samples specifically 
from minority class samples near the decision boundary 
to improve classification performance by targeting 
the most informative samples. Minority samples are 
categorized into three types: Safe (surrounded mostly 

Figure 1. The basic working principle of SMOTE. Modelling SMOTE workings using randomly generated data.
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outperforms conventional gradient boosting methods 
in terms of prediction performance. XGBoost performs 
well when dealing with datasets with a large number 
of features, which makes it suitable for extraction of 
key information from a large amount of patient datato 
predict PIs(18).Extra Trees (ET) is able to effectively 
deal with non-linear relationships and imbalanced 
datasets and improve the recognition of a few classes 
through its high stochasticity and integrated learning(17).
K-Nearest Neighbors (KNN) is a simple instance-based 
learning algorithm that does not require a training phase 
and can directly use training data for prediction. KNN 
performs well on small datasets, so it is suitable when 
the sample size is not particularly large, as in the current 
study, and especially when SMOTE processingis used 
(19).Logistic regression (LR) is a linear model that 
is suitable for binary classification problems and can 
provide a probabilistic interpretation of the prediction 
results. When predicting PIs, LR can provide a direct 
interpretation of the probability of a patient developing 
a pressure injury, which is useful for clinical decision-
making(20). Decision trees (DTs) are intuitive models 
that are easy to understand and interpret and can clearly 
demonstrate the relationship between features and target 
variables. DTs can help to identify the most important 
risk factors and can be used as a baseline for comparison 
to more complex models(17).
	 In the current study, the main challenge faced was the 
problem of a data imbalance, i.e., the number of patients 
with PIs (positive sample) was much smaller than the 
number of patients without PIs (negative sample). To 
address this issue, the SMOTE algorithm was used to 
balance the dataset and the seven ML models described 
earlier were usedto construct predictive models. These 
models were chosen based on their extensive use and 
history of success in dealing with imbalanced datasets, 
handling high-dimensional data, providing predictive 
explanations, and in medical predictive modelling. 
Comparing the performance of these models enables 
the identification of the most appropriate model for the 
currentdata and problem, thereby improving the accuracy 
and reliability of predicting PIs. In addition, the diversity 
of these models allows evaluationand validation of 
predictions from different perspectives, ensuring that the 
findings are robust and reliable.

2.2. Participants

Data from a total of 7,292 patients consisting of7,171 
indicators were selected from all recorded inpatient data 
ata tertiary care hospital in Shanghai during the period 
from May 2017 to July 2023 (numerous interfering 
items in data during the COVID-19 epidemic were not 
selected), and a total of 549 patients with PIs (7.53%)
served as the initial screening subjects. After data 
processing, data from the remaining 2,972 patientsserved 
as the final data for this study and included 158patients 

with PIs (5.32%).

2.3. Data preprocessing

When dealing with the huge number of 7,171 feature 
variables, the XGBoost model was usedto identify the 
features that contribute most to the model performance.
The advantage of XGBoost is that it is able to filter the 
features efficiently when there are missing values in the 
data, enabling the initialselectionof the top 32 feature 
variables that have the greatest impact on the model. 
Through further in-depth analyses, those features that 
were not strongly associated with PIswere eliminated and 
27 key feature variables were ultimately selected, laying 
a solid foundation for building an accurate prediction 
model. In order to maintain the high quality of the dataset 
and reduce the noise interference in model training, a 
key decision was made to eliminate sets of data with 
more than 8 missing values among the 27 key feature 
variables. This strategy helps to maintain the integrity of 
the dataset while avoiding the uncertainty introduced by 
too many missing values, ensuring the reliability of the 
data and the stability of model training. After completing 
the screening of feature variables and the reduction of the 
dataset, in-depth data preprocessing was performedon 
the remaining data. This includes meticulous treatment 
of missing values, outliers, and duplicate records, steps 
that are critical to ensuring the quality of the data and the 
smooth running of subsequent experiments.
	 Data preprocessing consisted mainly of the following: 
i) Categorical variables. Missing values for characteristic 
variables in the data involving categorical variables are 
uniformly filled in using plurality in the current study; 
ii) Continuous variables. Missing values for continuous 
variables in this study were filled in using the mean of 
the age groups. Age groups were every 10 years, and 0-9 
and10-19 were each averaged and populated within their 
age range.
	 These comprehensive data preprocessing measures 
ensured the cleanliness and consistency of the dataset, 
providing a solid data foundation for subsequent model 
training and analysis.

2.4. Evaluation metrics

In the model training phase, the datasetwas divided into 
training and validation sets at a ratio of 7:3, and multiple 
ML models were used to predict whether PIs occurred in 
emergency patients. In the model evaluation phase, two 
key evaluation metrics were used: the Confusion Matrix 
and ROC_AUC.
	 ROC curveswere also plotted and AUC values were 
calculated for each model; ROC curves demonstrate the 
model's performance under different thresholds, while 
AUC values quantify the model's ability to distinguish 
between positive and negative categories, with higher 
AUC values indicating better classification performance. 
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Finally, the confusion matrices and AUC values of 
the different modelswere compared to determine 
which model performed best in predicting PIs. This 
comprehensive assessment approach alloweda full 
understanding and comparison of the performance of 
each model in order to select the most appropriate model 
to aid inclinical decision-making.

2.5. Experimental design

The flow of this study is shown in Figure 2.

3. Results

3.1. Participants' characteristics

The distribution and comparison of several basic 
characteristics of patients with PIs (PI) and patients 
without PIs (Non-PI) is shown in Table 1. The table 
lists characteristics including sex, age, hypertension 
(HTN), hyperlipidemia, diabetes mellitus (DM), 
cardiovascular disease (CVD), history of malignancy, 
smoking status, drinking status, body temperature, 
pulse rate (PR), respiratory rate (RR), diastolic blood 
pressure (DBP), systolic blood pressure (SBP), body 
mass index (BMI), serum albumin, operating time, intra-
operative blood transfusion, intra-operative hypotension 
(IH), surgical position (thisrefers to the specific position 
of the patient during surgery. 1-3 are supine, prone, 
and lateral positions, respectively. 0 is an undefined 
position), surgical dressing, dressing site, anesthesia 
grade, method of anesthesia, oxygen saturation (SpO2), 

self-care competency grade, and blood glucose (BG). 
Categorical variables are expressed as the number 
(percentage) andcontinuous variables are expressed asthe 
mean (range). Comparison of these variables revealed 
significant differences in these characteristics between 
the two groups, with variables such as age, pulse rate, 
body mass index and method of anesthesia differing 
significantly between the two groups while variables 
such as sex, hypertension, and diabetes mellitus did not.
	 Given that the original dataset is multidimensional, 
visually depicting the newly generated positive samples 
presents a challenge. To overcome this, all variables 
wereprojected onto a single axis, thereby facilitating a 
clear visualization of the samples created by the SMOTE 
algorithm. For further details, refer to Figure 3.
Data after different methods of enhancement are shown 
in Tables 2-6.

3.2. Comparison of ML-based models

In this study, the confusion matrix of the model after 
using SMOTE and its variants revealed significant 
improvements as shown in Table 7. For example, the 
SMOTE-enhanced XGBoost model hadextremely high 
TP and TN values in internal validation while minimizing 
FP and FN values, indicating that the model performed 
well in identifying a small class of samples (patients 
with PIs). In addition, methods such as SMOTE+ENN 
and Borderline-SMOTE, although slightly inferior to 
SMOTE in some models, further improved the model's 
ability to identify minority classes by optimizing the 
sample quality or focusing on the borderline region.

Figure 2. Flowchart for this study.
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ADASYN and GAN also showed good performance 
in the confusion matrix, although they may face some 
challenges withhigh-dimensional data.
	 The analysis of the confusion matrix allows a more 
intuitive view of the impact of different methods of 
data enhancement on model performance. For example, 
SMOTE results in ahigh recall and precision in most 
models, while SMOTE+ENN performs well in removing 
noise, albeit possibly at the expense of some sample 

diversity.Borderline-SMOTE and ADASYN, in contrast, 
display better recognition of minority classes in specific 
models, although they have limited overall performance 
gains.GAN generated high-quality minority class 
samples, but its generated samples may be too close 
to the original samples, leading to an increased risk of 
overfitting.
	 As can be seen from Table 8, the performance metrics 
(e.g., precision, recall, F1 score, accuracy, and AUC) of 

Table 1. Basic characteristics of patients

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,814)

 1,614 (57.4%)
   54 [0-98]

    420 (14.9%)
      12 (0.05%)

  114 (4.1%)
      4 (0.2%)
  116 (4.1%)

    280 (10.0%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [38-198]
     20 [10-78]

       75 [24-152]
     124 [47-277]
   21.7 [5.4-49]

     36.7 [16.5-59]
        2.90 [0.15-7.29]

  262 (9.3%)
  246 (8.7%)

0.8 [0-3]
 2,351 (83.5%)
    464 (16.5%)

2.3 [0-5]
 2,678 (95.2%)
       97 [65-100]

2.8 [1-3]
        7.9 [1.4-28.0]

PI (n=158)

      69 (43.6%)
   74 [0-94]

      26 (17.5%)
   0 (0%)

    14 (8.9%)
   0 (0%)

    14 (8.9%)
    13 (8.2%)
      1 (0.6%)

        36.6 [35.2-40.3]
       84 [52-165]
     18 [12-33]

       81 [54-134]
       135 [100-195]

        22.7 [12.8-41.6]
        32.9 [18.4-45.7]

          2.82 [0.25-10.02]
    12 (7.6%)
      6 (3.8%)

0.4 [0-3]
    125 (79.1%)
      33 (20.9%)

1.8 [0-5]
      26 (17.5%)
       96 [47-100]

2.9 [2-3]
        8.0 [3.8-17.6]

p value

   0.625 
< 0.001
   0.105 
   0.445 
   0.604 
   0.700 
   0.460 
   0.089 
   0.709 
   0.684 
   0.003 
   0.187 
   0.291 
   0.278 
< 0.001
   0.488 
   0.586 
   0.693 
   0.912 
   0.532 
   0.746 
   0.823 
   0.011 
< 0.001
   0.567 
   0.006 
   0.243 

Figure 3. Status of data generated by SMOTE.
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Table 2. Supplementary data-enhanced dataset - SMOTE

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,329 (59.0%)
   53 [0-98]

    329 (14.6%)
    11 (0.5%)
    91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
        7.9 [1.4-28.0]

PI (n=2,252)

    821 (36.5%)
   74 [0-94]

    778 (34.5%)
   0 (0%)

    39 (1.7%)
   0 (0%)

    22 (1.0%)
    32 (1.4%)

   0 (0%)
        36.5 [36.0-40.3]

       83 [52-165]
     18 [12-33]

       81 [56-134]
     135 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.76 [0.25-10.02]
    389 (17.3%)
    38 (1.7%)

0.4 [0-3]
 1,315 (58.4%)
  159 (7.1%)

3.2 [2-5]
 1,519 (67.5%)
       97 [65-100]

2.9 [2-3]
        7.9 [3.8-13.4]

p value

< 0.001
< 0.001
< 0.001
   0.011
< 0.001
   0.153
< 0.001
< 0.001
   0.515
   0.247
< 0.001
< 0.001
< 0.001
   0.604
< 0.001
   0.886
< 0.001
< 0.001
   0.017
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.003
< 0.001
   0.575

Table 3. Supplementary data-enhanced dataset - ADASYN

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

  1,311 (58.2%)
   54 [0-98]

    346 (15.3%)
      9 (0.4%)
    96 (4.3%)
      3 (0.1%)
  138 (6.1%)
  223 (9.9%)
      1 (0.1%)

        36.6 [35.9-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [47-277]
   21.7 [5.4-49]

        36.8 [16.5-59.0]
        2.89 [0.17-6.84]

  206 (9.1%)
  209 (9.3%)

0.8 [0-3]
 1,876 (83.3%)
    376 (16.7%)

2.8 [1-5]
 2,143 (95.2%)
       97 [71-100]

2.9 [1-3]
        7.9 [1.4-23.0]

PI (n=2,252)

    733 (32.5%)
   73 [0-94]
    64 (2.8%)

   0 (0%)
    36 (1.6%)

   0 (0%)
    34 (1.5%)
    33 (1.5%)

   0 (0%)
        36.6 [35.2-40.3]

       84 [52-165]
     18 [12-33]

       81 [54-134]
     134 [50-195]

        22.7 [12.8-41.6]
        33.0 [18.4-45.7]

          2.80 [0.25-10.02]
      41 (18.2%)
      2 (0.1%)

0.4 [0-3]
 1,433 (63.6%)
    95 (4.2%)

3.2 [2-5]
 1,660 (73.7%)
       97 [65-100]

2.9 [2-3]
        8.0 [3.8-17.6]

p value

< 0.001
< 0.001
< 0.001
   0.101
   0.109
   0.785
< 0.001
< 0.001
   0.305
   0.079
< 0.001
< 0.001
   0.001
   0.987
< 0.001
   0.119
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.002
< 0.001
   0.007
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Table 4. Supplementary data-enhanced dataset - GAN

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,290 (59.0%)
   55 [0-98]

    329 (14.6%)
     11 (0.5%)
     91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
       7.9 [1.4-28.0]

PI (n=2,252)

    821 (36.5%)
   74 [0-94]

    778 (34.5%)
   0 (0%)

    39 (1.7%)
   0 (0%)

    22 (1.0%)
    32 (1.4%)

   0 (0%)
        36.5 [36.0-40.3]

       83 [52-165]
     18 [12-33]

       81 [56-134]
     135 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.76 [0.25-10.02]
    389 (17.3%)
    38 (1.7%)

0.4 [0-3]
 1,315 (58.4%)
  159 (7.1%)

3.2 [2-5]
 1,519 (67.5%)
       97 [65-100]

2.9 [2-3]
       7.9 [3.8-13.4]

p value

   0.715
< 0.001
   0.077
   0.396
   0.023
   0.500
   0.302
   0.173
   0.166
   0.687
< 0.001
   0.199
   0.412
   0.322
< 0.001
   0.649
   0.026
   0.919
   0.371
   0.121
   0.187
   0.056
< 0.001
< 0.001
< 0.001
   0.002
   0.447

Table 5. Supplementary data-enhanced dataset - SMOTE + ENN

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,329 (59.0%)
   53 [0-98]

    329 (14.6%)
    11 (0.5%)
    91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
        7.9 [1.4-28.0]

PI (n=2,252)

    809 (35.9%)
   74 [0-94]
    89 (4.0%)

   0 (0%)
    30 (1.3%)

   0 (0%)
    31 (1.4%)
    32 (1.4%)

   0 (0%)
        36.5 [36.0-40.3]

       83 [52-165]
     18 [12-33]

       81 [56-134]
     134 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.76 [0.25-10.02]
    16 (0.7%)
      1 (0.1%)

0.3 [0-3]
 1,335 (59.3%)
  150 (6.7%)

3.2 [2-5]
 1,555 (69.0%)
       97 [65-100]

2.9 [2-3]
        7.9 [3.8-13.4]

p value

< 0.001
< 0.001
< 0.001
   0.489
   0.103
   0.360
< 0.001
< 0.001
   0.267
   0.586
< 0.001
< 0.001
   0.003
   0.979
< 0.001
   0.451
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.845
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all ML models improvedsignificantly after using SMOTE 
and its variants (e.g., SMOTE+ENN, Borderline-
SMOTE). For example, XGBoost improved its AUC 
value from 0.800 to 0.996 after using SMOTE, showing 
that methods of data enhancement play an important role 
in improving the model's ability to recognize a small 
number of classes.
	 Figure 4 shows the ROC analyses of the ML models 
under different conditions: (A) based on raw data, (B) 
based on SMOTE, (C) based on SMOTE+ENN, (D) 
based on Borderline-SMOTE, (E) based on GAN, and 

(F) based on ADASYN. These curves demonstrate the 
models' performance under various thresholds, with 
higher AUC values indicating better classification 
performance. The results clearly indicate that the 
models using SMOTE and its variants hadsignificantly 
higher AUC values compared to those using raw data, 
highlighting the effectiveness of these techniques in 
addressing a data imbalance.
	 When dealing with imbalanced data, SMOTE 
generates minority class samples by interpolation, which 
effectively increases sample diversity but may introduce 

(181)

Table 6. Supplementary data-enhanced dataset - Borderline-SMOTE

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,329 (59.0%)
   53 [0-98]

    329 (14.6%)
    11 (0.5%)
    91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
        7.9 [1.4-28.0]

PI (n=2,252)

    701 (31.1%)
   79 [0-94]

    773 (34.3%)
   0 (0%)

    53 (2.4%)
   0 (0%)

    11 (0.5%)
    12 (0.5%)

   0 (0%)
        36.6 [36.0-40.3]

       84 [52-165]
     18 [12-33]

       83 [56-134]
     138 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.49 [0.25-10.02]
    372 (16.5%)
    39 (1.7%)

0.3 [0-3]
 1,168 (51.9%)
  172 (7.6%)

3.2 [2-5]
 1,466 (65.1%)
       97 [65-100]

2.9 [2-3]
        7.9 [3.8-13.4]

p value

< 0.001
< 0.001
< 0.001
   0.014
   0.001
   0.061
< 0.001
< 0.001
   0.985
   0.718
< 0.001
< 0.001
< 0.001
   0.005
< 0.001
   0.034
   0.137
< 0.001
   0.468
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.151
   0.001
   0.969

Table 7. Confusion matrix for each model (TN/FP/FN/TP)

Model

SVM
LR
RF
ET
KNN
DT
XGBoost

Model

SVM
LR
RF
ET
KNN
DT
XGBoost

RAW Data

2814/0/158/0
2802/12/151/7
2812/2/157/1
2813/1/157/1
2787/27/153/5

2655/159/123/35
2780/34/147/11

SMOTE+ENN

1477/775/461/1791
1938/314/367/1885
2184/68/57/2195
2182/70/56/2196
1767/485/28/2224
2059/193/114/2138
2195/57/83/2169

SMOTE

1477/775/461/1791
1938/314/367/1885
2184/68/57/2195
2182/70/56/2196
1767/485/28/2224
2059/193/114/2138
2195/57/83/2169

ADASYN

1415/837/421/1831
1916/336/369/1883
2168/84/76/2176
2147/105/89/2163
1734/518/21/2231
2019/233/149/2103
2181/71/84/2168

Borderline-SMOTE

1683/569/250/2002
1995/257/292/1960
2203/49/80/2172
2199/53/76/2176
1909/343/38/2214
2067/185/113/2139
2189/63/86/2166

GAN

2252/0/341/1911
2237/15/302/1950
2242/10/83/2169
2238/14/87/2165
2218/34/75/2177

2102/150/124/2128
2192/60/89/2163
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noise near boundary samples. Nevertheless, SMOTE 
performs well in most models, and especially in XGBoost 
and Random Forest (RF), with an AUC value close to 
1, indicating strong classification ability.SMOTE+ENN 
combines the undersampling techniques of SMOTE and 
ENN, which aim to remove noisy samples and further 
optimize the quality of the minority class samples. 
Although its performance is slightly inferior to SMOTE 
in most models, its performance is close in some models 
(e.g., KNN), suggesting that it is effective in removing 
noise but may have sacrificed some of the sample 
diversity.Borderline-SMOTE focuses on generating 
samples near the category boundaries, which helps to 

improve the model's ability to discriminate between 
the boundary regions, but has limited performance 
improvement in most models and with high-dimensional 
data, the definition of boundary samples may not be clear 
enough, limiting its effectiveness.ADASYN is similar to 
SMOTE, but focuses more on the hard-to-learn regions 
of the minority class samples and improves the model 
performance through adaptive sampling.ADASYN 
performs well in some models (e.g., XGBoost), but 
the overall performance is slightly lower than that of 
SMOTE, probably because the way it generates samples 
relies more on the local distribution of the minority class 
samples.GAN, as a state-of-the-art generative adversarial 
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Table 8. Model performance comparison

Models

Raw data
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
SMOTE
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
SMOTE+ENN
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
Borderline-SMOTE
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
ADASYN
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
GAN
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost

Precision

0.000 
0.350 
0.200 
0.100 
0.065 
0.151 
0.290 

0.695
0.846
0.975
0.974
0.832
0.918
0.975

0.701 
0.858 
0.974 
0.972 
0.826 
0.917 
0.982 

0.782 
0.884 
0.978 
0.984 
0.872 
0.927 
0.974 

0.690 
0.834 
0.957 
0.949 
0.813 
0.881 
0.958 

1.000 
0.993 
0.995 
0.994 
0.985 
0.933 
0.975 

Recall

0.000 
0.025 
0.012 
0.006 
0.026 
0.165 
0.082 

0.794
0.816
0.982
0.974
0.991
0.95
0.964

0.786 
0.835 
0.978 
0.974 
0.986 
0.946 
0.961 

0.887 
0.871 
0.964 
0.971 
0.985 
0.955 
0.960 

0.783 
0.818 
0.924 
0.907 
0.934 
0.876 
0.944 

0.930 
0.930 
0.930 
0.930 
0.930 
0.930 
0.930 

F1-score

0.000 
0.046 
0.023 
0.012 
0.037 
0.152 
0.124 

0.741
0.829
0.977
0.973
0.904
0.932
0.966

0.741 
0.844 
0.975 
0.972 
0.899 
0.930 
0.967 

0.831 
0.875 
0.968 
0.975 
0.925 
0.938 
0.963 

0.729 
0.824 
0.939 
0.927 
0.869 
0.878 
0.949 

0.958 
0.954 
0.955 
0.955 
0.950 
0.922 
0.945 

Accuracy

0.947 
0.947 
0.946 
0.947 
0.939 
0.898 
0.938 

0.723
0.834
0.978
0.974
0.895
0.932
0.969

0.725 
0.849 
0.976 
0.973 
0.889 
0.930 
0.971 

0.820 
0.879 
0.971 
0.977 
0.921 
0.940 
0.968 

0.715 
0.827 
0.941 
0.930 
0.859 
0.879 
0.951 

0.965 
0.962 
0.963 
0.962 
0.957 
0.928 
0.952 

AUC

0.565
0.781
0.795
0.786
0.649
0.573
0.800

0.805
0.919
0.998
0.996
0.961
0.930
0.996

0.802
0.925
0.997 
0.996 
0.957
0.932
0.993

0.879
0.949
0.992
0.992 
0.969 
0.938
0.989

0.791 
0.930 
0.995 
0.993 
0.957 
0.921 
0.994

0.933 
0.932 
0.939 
0.939 
0.957
0.927 
0.951
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network, generates high-quality minority class samples 
through the adversarial training of generators and 
discriminators. It performs well in some models, but its 
computational cost is high and it may face the problem of 
unstable training with high-dimensional data. In addition, 
the samples generated by GANs may be too close to the 

original samples, increasing the risk of overfitting.
	 In conclusion, methods of data enhancement, and 
especially SMOTE and its variants, have significant 
effects on improving the performance of models. In 
practical use, the most appropriate methods of data 
enhancement can be selected dependingto the specific 
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Figure 4. ROC analyses of applied machine learning models.(A) based on raw data, (B) based on SMOTE, (C) based on SMOTE+ENN, (D) 
based on Borderline-SMOTE, (E) based on GAN, (F) based on ADASYN.
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problems and models. These methods effectively 
improve the performance of the model withimbalanced 
datasets by increasing the number and diversity of 
samples, which improves the precision, recall, and 
overall classification performance of the model.

3.3. Validation and interpretability

Table 9 shows the five-fold cross-validation of SMOTE-

based processed data.After comparing the performance 
of the model in 5-fold cross-validation and the original 
dataset, RF and XGBoost displayed the great stability 
and consistency in both methods of evaluation, with 
an AUC value close to 1, indicating its excellent 
generalization ability across different datasets.
	 In order to prevent possible overfitting after SMOTE 
processing and to test the generalization ability of the 
model, external validation of the constructed modelwas 
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Table 9. Fifty-fold cross-validation of the models

Models

SVM
LR
RF
ET
KNN
DT
XGBoost

Precision

0.695 (0.664 - 0.721)
0.846 (0.777 - 0.854)
0.975 (0.925 - 0.990)
0.974 (0.929 - 0.990)
0.832 (0.724 - 0.888)
0.918 (0.868 - 0.949)
0.975 (0.938 - 0.985)

Recall

0.794 (0.772 - 0.823)
0.816 (0.584 - 0.894)
0.982 (0.857 - 1.000)
0.974 (0.798 - 1.000)
0.991 (0.860 - 1.000)
0.950 (0.766 - 0.970)
0.964 (0.660 - 1.000)

F1-score

0.741 (0.729 - 0.763)
0.829 (0.666 - 0.872)
0.977 (0.958 - 0.987)
0.973 (0.879 - 0.990)
0.904 (0.729 - 0.940)
0.932 (0.848 - 0.949)
0.966 (0.790 - 0.987)

Accuracy

0.723 (0.700 - 0.744)
0.834 (0.709 - 0.856)
0.978 (0.922 - 0.992)
0.974 (0.892 - 0.990)
0.895 (0.819 - 0.914)
0.932 (0.863 - 0.949)
0.969 (0.825 - 0.995)

AUC

0.805 (0.788 - 0.831)
0.919 (0.802 - 0.952)
0.998 (0.997 - 1.000)
0.996 (0.968 - 1.000)
0.961 (0.932 - 0.971)
0.932 (0.863 - 0.949)
0.997 (0.975 - 1.000)

Table 10. External validation dataset distribution

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=277)

    160 (57.7%)
   53 [0-91]

    244 (88.1%)
    276 (99.6%)
    13 (4.7%)
      1 (0.4%)
    11 (4.0%)

      28 (10.1%)
      1 (0.4%)

        36.6 [35.9-38.4]
       88 [38-170]

     20 [11-70]
       75 [30-113]
     123 [57-190]
     21.5 [11.1-49]

        37.1 [18.6-34.3]
        2.89 [0.17-6.43]

    256 (92.4%)
    248 (89.5%)

0.8 [0-3]
    233 (84.1%)
      44 (15.9%)

2.8 [1-5]
    263 (94.9%)
       97 [76-100]

2.9 [2-3]
        7.9 [2.6-23.0]

PI (n=277)

     192 (68.6%)
    73 [2-94]

     173 (62.4%)
       277 (100.0%)

       8 (2.9%)
    0 (0%)

       2 (0.7%)
      4 (1.4%)

   0 (0%)
        36.5 [36.0-39.7]

       82 [53-150]
     18 [12-32]

       81 [56-120]
     133 [86-194]

        22.7 [13.9-29.9]
        33.1 [20.0-42.8]
        2.78 [0.37-9.71]

    230 (83.0%)
    270 (97.5%)

0.3 [0-3]
    156 (56.3%)
    15 (5.4%)

3.1 [2-5]
    195 (70.4%)
       96 [67-100]

2.9 [2-3]
        7.9 [3.8-12.9]

p value

   0.004
< 0.001
< 0.001
   0.751
   0.037
   0.266
   0.084
   0.067
   0.481
   0.599
   0.044
   0.058
   0.012
   0.133
   0.090
   0.401
< 0.001
   0.004
   0.423
< 0.001
< 0.001
< 0.001
   0.541
   0.001
   0.442
   0.206
   0.655

Table 11. Performance of each model under external validation

Models

SVM
LR
RF
ET
KNN
DT
XGBoost

Precision

0.731 
0.825 
0.939 
0.940 
0.872 
0.942 
0.977 

Recall

0.733 
0.829 
0.945 
0.947 
0.872 
0.948 
0.978 

F1-score

0.731 
0.825 
0.939 
0.940 
0.872 
0.942 
0.977 

Accuracy

0.731 
0.824 
0.938 
0.940 
0.872 
0.942 
0.977 

AUC

0.731 
0.825 
0.939 
0.940 
0.872 
0.942 
0.977 
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attempted, but since the original amount of data was 
very small and had already been internally validated, 
cutting the data inside for external validation would 
have affected the performance of the original model, 
so the missing values that had been excluded from the 
original set of 9-14 data strips were used on a 1:1 basis. 
Positive and negative sampleswere selected in the order 
of missing values, and the missing values were added 
according to the data filling method in the previous 
section to serve as the external validation set. The data 
distribution of the external validation set is shown in 
Table 10, and the external validation results are shown in 
Table 11.
	 Based onthe external validation data, the precision, 
recall, F1 score, accuracy and AUC values of all models 
are very close to each other, indicatinga high degree of 
consistency in the performance of the models on the new 
dataset. The XGBoost model performed best in external 
validation, with a precision, recall, F1 score, accuracy 
and AUC value of 0.977, which is close to perfect, 
indicating excellent generalizability and prediction 
performance.
	 Combining the results of internal cross-validation 
and external validation, XGBoost, Random Forest 
(RF), and Extra Trees (ET) performed the best in 
terms of performance and stability. These models not 

only displayed low variability and high stability in 
internal cross-validation but also exhibited extremely 
high accuracy and AUC values in external validation, 
indicating their excellent generalizability. Especially, 
XGBoost, with its near-perfect external validation 
results, is the best choice among all models.
	 In response to the pervasive black-box problem 
of ML, SHAP (SHapley Additive exPlanations)has 
been introduced to increase the interpretability of the 
model. The scatterplot of SHAP values reveals the 
extent to which different features contribute to the 
predicted results of a ML model. Each point in the 
graph represents the SHAP value of a sample, which 
measures the contribution of a particular feature to the 
model output. The color gradient goes from blue to red, 
representing low to high feature values, respectively. 
Figure 5 shows that Anesthesia Grade has a significant 
effect on the model output. A high Anesthesia Grade 
(red points) is generally located on the right side of 
the graph, which indicates that it tends to increase the 
predictive value of the model when the Anesthesia Grade 
is high. Conversely, low anesthesia levels (blue points) 
tend to decrease the predicted value of the model, and 
most of these points are located on the left side of the 
graph. Age is also a key factor that has a broad impact on 
model predictions. Older people (red dots) tend to have 
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Figure 6. SHAP dependency plot.

Figure 5. SHAP Summary plot of key factors.
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positive SHAP values, implying that an increase in age 
may improve the model's predictions. In contrast, SHAP 
values for younger people (blue dots) tend to be negative, 
suggesting that a younger age may decrease model 
predictions. Serum albumin levels also had a significant 
impact on model predictions. Samples with high serum 
albumin levels (red dots) tend to have negative SHAP 
values in the graph, which could mean that higher serum 
albumin levels are associated with lower predictions 
in the model. Low serum albumin levels (blue dots), 
in contrast, are associated with positive SHAP values, 
suggesting that lower serum albumin levels may improve 
the predictive value of the model. The corresponding 
SHAP values when the variable of interest is a particular 
value are shown in Figure 6.

4. Discussion

The SMOTE algorithm yielded significant results 
whendealing with a data imbalance, but there are some 
potential limitations and risks. First, SMOTE may 
introduce noise, and especially when noise or outliers 
are present in a few class samples, and the synthesized 
samples may also contain that noise, affecting the 
model performance. Second, SMOTE is sensitive to the 
choice of parameter k (number of nearest neighbors), 
and improper values for k may lead to overfitting or 
the introduction of excessively noisy data. In addition, 
SMOTE is computationally expensive, and especially 
when dealing with large-scale datasets, and calculating 
the k nearest neighbors can be very time-consuming. 
More importantly, SMOTE increases the number of 
samples in a few classes by synthesizing samples that 
may be too close to the original samples, increasing the 
risk of overfitting and reducing the generalizability of the 
model. Finally, SMOTE may introduce noise or produce 
unrealistic data points when generating new samples 
near the boundary samples, affecting the classification 
effectiveness of the model.
	 SMOTEhas been widely used to address the issue of 
imbalanced class distribution in various ML applications. 
Sáez et al. introduced SMOTE-IPF, a re-sampling 
method with filtering, to tackle the problem of noisy and 
borderline examples in imbalanced classification(21). 
Rastogi et al. focused on implementing SMOTE in 
a distributed environment under Spark, highlighting 
the importance of applyingSMOTE to big data 
classification(22). Bao et al.integrated SMOTE 
with KNN and long short-term memory networks 
(LSTMs) to detect anomalies in high-dimensional and 
imbalanced data(23). Hemalatha et al. proposed FG-
SMOTE, a fuzzy-based Gaussian synthetic minority 
oversampling algorithm, to handle imbalanced data 
and improve classifier performance(24). However, that 
study identified limitations such as the need to apply 
FG-SMOTE to multiclass imbalanced datasets and 
to evaluate theproblem of imbalancein a distributed 

environment. Mukherjee et al. introduced SMOTE-ENC, 
a novel SMOTE-based method for generating synthetic 
data with both nominal and continuous features(25). That 
study found that SMOTE-ENC outperformed SMOTE-
NC in datasets with a substantial number of nominal 
features and associations between categorical features 
and the target class. Xia et al. proposed GBSMOTE, a 
sampling method based on granular-ball computing and 
SMOTE, to address the limitations of SMOTE such as 
noisy generated samples and boundary blurring(26). In 
the context of specific applications, Ismail etal. combined 
oversampling and undersampling techniques in SMOTE-
RUS to classify imbalanced autism spectrum disorder 
datasets effectively(27). Nazarudin et al.usedsynthetic 
data generation techniques, including SMOTE and GAN-
SMOTE, to train ML models to predictTenaga Nasional 
Berhad stock price movements(28). Overall, SMOTE 
has been a valuable tool in addressing a class imbalance, 
but studies have identified its limitations such as noisy 
samples, boundary blurring, and challenges in handling 
multiclass datasets and distributed environments. Future 
research may focus on enhancing SMOTE algorithms 
to overcome these limitations and improve their 
effectiveness in various applications.
	 To address these limitations and risks, future work 
can explore several directions. First, improved versions 
of SMOTE, such as Borderline-SMOTE or ADASYN, 
can be investigated and developed to improve the 
performance and stability of the algorithm through 
different strategies ofselecting the original samples 
used for generating new samples or adjusting the way 
in which new samples are generated. Second, the 
SMOTE algorithm can be used in conjunction with 
other techniques (e.g., undersampling and integrated 
learning) to further improve the performance of the 
model. For example, the SMOTE algorithm can be used 
to oversample a small number of classes first, and then 
integrated learning methods can be used to train multiple 
models and obtain the final prediction results by voting 
or averaging. In addition, suitable evaluation metrics 
need to be used to assess the performance of the models, 
and especially withimbalanced datasets, where metrics 
such as recall and F1 scores often reflect the actual 
performance of the models better than accuracy. New 
learning algorithms designed specifically for imbalanced 
data can also be developedto improve the recognition of 
minority classes by adjusting sample weights or other 
mechanisms without increasing the number of samples. 
Finally, with the advent of the big data era, the useof 
SMOTEin big data environments can beexploredto 
address the challenges posed by the expanded size of 
data, such as computational efficiency and storage issues, 
is also an important direction for future work. Through 
these efforts, we can address the problem of a data 
imbalance more effectively and improve the predictive 
performance and generalization ability of the model.
	 This study had several limitations.First,the total 
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number of samples is still somewhat small relative to 
ML, so the model performance after SMOTE is bound to 
have overfitting to a certain extent. With the subsequent 
supplementation of the external validation set, there is 
also a certain amount of contamination of the training 
data. Second, based on data from only one hospital, the 
population is affected by the geographic area and may 
not necessarily be generalizable to other geographic 
areas.Further research will be conducted based on these 
issues in conjunction with multiple hospitals.

5. Conclusion

This study underscores the significance of usingML 
models to address the challenge of data imbalances 
in the prediction of perioperative PIs. The integration 
of synthetic minority oversampling techniques, and 
particularly SMOTE, with ML algorithms has been 
found to markedly enhance predictive accuracy, and 
especially in scenarios with few positive samples. The 
useof SMOTE and its variants, such as SMOTE+ENN 
and Borderline-SMOTE, has been shown to bolster the 
model's capacity to recognize minority classes, leading to 
more nuanced predictive modeling for PIs in emergency 
patient populations.
	 Among the seven ML models assessed, the 
combination of XGBoost with SMOTE emerged as 
the most effective, withan internally validated AUC of 
0.996 and an externally validated AUC of 0.977. This 
result underscores the superior discriminative power 
of the XGBoost model when combined with SMOTE, 
outperforming other models across various metrics 
including precision, recall, F1 score, and accuracy. This 
study not only highlights the clinical utility of ML models 
augmented with SMOTE technology in predicting PIs 
but also underscores the importance of controlling a data 
imbalance toenhance the predictive value of ML models 
in healthcare settings. The findings suggest that the 
synergy of SMOTE with ML algorithms presents a viable 
strategy for mitigating the limitations of conventional 
risk assessment tools and dealing with the inherent data 
imbalances present in healthcare data. Future research 
is warranted to refine SMOTE techniques, explore their 
integration with other methodologies, and develop novel 
algorithms tailored for imbalanced datasets, thereby 
improving the reliability and accuracy of ML models in 
healthcare.
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1. Introduction

With aging of the global population, Alzheimer's disease 
(AD) has emerged as a major public health challenge 
and a key focus of neurodegenerative disease research 
(1). The pathological hallmarks of AD primarily 
include neurofibrillary tangles (NFTs) formed by 
hyperphosphorylated tau protein and amyloid plaques 
resulting from the deposition of insoluble β-amyloid 
protein (Aβ) (2). These abnormal proteins progressively 
accumulate, triggering neuroinflammatory responses, 
activating microglia and astrocytes, and exacerbating 
neuronal damage and neurodegenerative changes (2).
	 The pathogenesis of AD is complex, involving 
multiple cellular and molecular abnormalities, such 
as endoplasmic reticulum (ER) stress, mitochondrial 
dysfunction, oxidative stress, and chronic inflammation 
(2). Studies have shown that several ER stress markers, 
including phosphorylated PERK, phosphorylated 
IRE1α, phosphorylated eIF2α, XBP1, and CHOP, are 
significantly upregulated in the brain tissue of patients 
with AD (3-5). Moreover, ER stress enhances γ-secretase 
activity, promoting Aβ secretion and intensifying the 
accumulation of abnormal proteins, thereby accelerating 

the progression of AD (6,7).
	 Despite advances in AD research, the development 
of effective treatments to slow its progression remains 
elusive due to its heterogeneity and multifactorial 
pathogenesis (8). Consequently, the development of 
targeted and innovative therapeutic approaches has 
become a critical priority in AD research. In recent years, 
stem cell therapy has gained considerable attention due 
to its pluripotency and immunomodulatory properties, 
emerging as a promising avenue in neurodegenerative 
disease studies (9,10). Specifically, research has 
demonstrated that transplantation of bone marrow-
derived mesenchymal stem cells (BMSCs), adipose-
derived mesenchymal stem cells (ADMSCs), and neural 
stem cells (NSCs) can potentially have neuroprotective 
and reparative effects on neurodegenerative diseases (8).
	 Olfactory mucosa mesenchymal stem cells (OM-
MSCs), a unique type of stem cell derived from the 
ectoderm, retain the immunomodulatory and tissue 
repair capabilities of traditional mesenchymal stem 
cells (MSCs) while exhibiting enhanced neurogenic 
potential. OM-MSCs have displayed distinct advantages 
in neurodegenerative disease research, particularly due to 
their minimally invasive isolation from the nasal cavity, 
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SUMMARY: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, 
neuroinflammation, and endoplasmic reticulum (ER) stress. In recent years, exosomes have garnered significant 
attention as a potential therapeutic tool for neurodegenerative diseases. This study, for the first time, investigates the 
neuroprotective effects of exosomes derived from olfactory mucosa mesenchymal stem cells (OM-MSCs-Exos) in AD 
and further explore the potential role of low-density lipoprotein receptor-related protein 1 (LRP1) in this process. Using 
an Aβ1-42-induced AD mouse model, we observed that OM-MSCs-Exos significantly improved cognitive function in 
behavioral tests, reduced neuroinflammatory responses, alleviated ER stress, and decreased neuronal apoptosis. Further 
analysis revealed that OM-MSCs-Exos exert neuroprotective effects by modulating the activation of microglia and 
astrocytes and influencing the ER stress response, a process that may involve LRP1. Although these findings support 
the potential neuroprotective effects of OM-MSCs-Exos, further studies are required to explore their long-term stability, 
dose dependency, and immunogenicity to assess their feasibility for clinical applications.

Keywords: cellular stress regulation, microglial activation, astrocytic response, pro-inflammatory cytokines, 
neuroprotection, cognitive improvement
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which reduces ethical concerns. Despite the remarkable 
therapeutic potential of stem cell therapy, however, 
direct transplantation faces certain limitations, including 
difficulties in crossing the blood-brain barrier (BBB) and 
potential tumorigenic risks. As a result, recent studies 
have increasingly shifted focus toward the paracrine 
effects of stem cells, and particularly the extracellular 
vesicles (EVs) and exosomes they secrete.
	 Exosomes are lipid nanoparticles with diameters 
ranging from approximately 30 to 150 nanometers, that 
are capable of carrying a variety of bioactive molecules, 
such as proteins, nucleic acids, and lipids. Due to their 
favorable biocompatibility and low immunogenicity, 
exosomes can effectively cross the BBB, positioning 
them as an emerging therapeutic s trategy for 
neurodegenerative diseases (11). For instance, a study has 
shown that BMSCs-derived exosomes can significantly 
ameliorate cognitive dysfunction in AD-like mouse 
models (9).
	 Nevertheless, the potential role and underlying 
molecular mechanisms of OM-MSCs-Exos in AD 
remain largely unexplored. To address this gap, the 
current study aims to investigate the neuroprotective 
effects and mechanisms of OM-MSCs-Exos in AD 
treatment using a mouse model of Aβ1-42-induced AD 
and an SH-SY5Y cell model. Specifically, this study 
examines whether OM-MSCs-Exos have an effect by 
modulating neuroinflammation and ER stress responses. 
The findings of this study are expected to provide 
theoretical support for stem cell-based therapeutic 
strategies in AD and lay the groundwork for future 
clinical translational research.

2. Materials and Methods

2.1. Isolation and culture of OM-MSCs

Olfactory epithelial tissue was isolated from the 
nasal cavity of C57BL/6 mice, cut into small pieces, 
and cultured in DMEM/F-12 medium (Gibco, USA) 
supplemented with 15% fetal bovine serum (FBS) for 
7 days (12). Non-adherent cells were removed, and the 
remaining cells were digested with trypsin and expanded 
until passage 3.
	 Surface markers of OM-MSCs were analyzed using 
flow cytometry. Specifically, 1×10⁶ cells (100 µL) 
were placed in a 1.5 mL EP tube and incubated with 
antibodies against CD29, CD90, CD44, CD34, CD45, 
and CD11b (eBioscience, USA). After incubation at 
room temperature in the dark for 30 minutes, cells were 
washed with 1 mL PBS and centrifuged at 350 g for 5 
minutes. The supernatant was discarded, and the cells 
were resuspended in 350 µL of PBS for flow cytometry 
analysis.
	 Osteogenic and adipogenic differentiation of OM-
MSCs was induced under specific culture conditions. 
For osteogenic differentiation, OM-MSCs were cultured 

in an osteogenic induction medium (Abiowell, China) 
for 3 weeks and stained with Alizarin Red to assess 
differentiation. For adipogenic differentiation, cells were 
cultured in an adipogenic induction medium (Abiowell, 
China) for 14 days and stained with Oil Red O to 
evaluate differentiation.

2.2. Isolation and characterization of OM-MSCs-Exos

OM-MSCs from passages 3–5 were cultured to 90% 
confluence, washed three times with PBS, and then 
incubated in medium containing 10% exosome-depleted 
FBS for 48 hours. The conditioned medium was 
collected and stored at -80°C.
	 The collected supernatant was centrifuged at 1500 
rpm for 5 minutes, followed by 3000 rpm for 30 minutes 
to remove cellular debris. The supernatant was then 
filtered through a 0.22-µm membrane and concentrated 
via ultrafiltration. After centrifugation at 3000 rpm for 10 
minutes, exosomes were pelleted by ultracentrifugation 
at 100,000 g for 2 hours.
	 The size distribution of exosomes was measured 
using nanoparticle tracking analysis (NTA, Nanosight 
NS300, Malvern, UK). The morphology and size of 
exosomes were observed using transmission electron 
microscopy (TEM, HITACHI, Japan).

2.3. Animal model and experimental design

Eight-week-old male C57BL/6 mice weighing 23–25 g 
were purchased from Hunan SJA Laboratory Animal Co., 
Ltd. All animals met specific pathogen-free standards and 
were housed under controlled conditions (temperature: 
25±1°C; humidity: 60±5%; 12-hour light/dark cycle) 
with free access to food and water. The experiments were 
approved by the Ethics Committee of Haikou Hospital 
Affiliated with Xiangya Medical College, Central South 
University, and conducted in accordance with the Guide 
for the Care and Use of Laboratory Animals published 
by the National Institutes of Health (13).
	 The mouse model of AD was established as 
previously described (14). Mice were randomly divided 
into five groups: a sham group, an AD group, an 
AD+OM-MSCs-Exos group, an AD+si-NC-Exos group, 
and an AD+si-LRP1-Exos group, with 6 mice per group. 
To induce AD, mice were anesthetized with sodium 
pentobarbital, and Aβ1-42 (6 µg) was injected bilaterally 
into the hippocampus (anterior-posterior: -2.0 mm; 
medial-lateral: ±1.6 mm; dorsal-ventral: 1.5 mm from 
Bregma) using a stereotaxic apparatus. The control group 
received an equal volume of saline.
	 Subsequently, each mouse received tail vein 
injections of 100 µL PBS, OM-MSCs-Exos, si-NC-Exos, 
or si-LRP1-Exos (1 mg/mL) twice weekly for 4 weeks. 
Following the final injection, cognitive function was 
assessed using the Morris water maze (MWM) test (15) 
and the novel object recognition test (NORT) (9).
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Tsingke Biotech Co., Ltd. The RT-qPCR protocol 
included denaturation at 95°C for 10 minutes, followed 
by 40 amplification cycles (95°C for 15 seconds, 60°C 
for 30 seconds) (Supplemental Table S1, https://www.
biosciencetrends.com/action/getSupplementalData.
php?ID=248),

2.9. ELISA

Levels of IL-1β, IL-6, TNF-α, and Aβ1-42 expression in 
brain tissue and cell culture supernatant were measured 
using ELISA kits (Wuhan Fine Biotech, China) 
according to the protocol provided.

2.10. Western blot (WB)

Protein concentrations were quantified using a BCA 
protein assay kit (Abiowell, China). Equal amounts 
of protein were loaded onto SDS-PAGE gels and 
transferred to PVDF membranes for immunoblotting. 
Primary antibodies included Calnexin (Abiowell, China), 
CD9 (Abiowell, China), CD63 (Proteintech, USA), 
BCL-2 (Abiowell, China), BAX (Abiowell, China), 
Cleaved-caspase3 (PTG, USA), CHOP (Abiowell, 
China), GRP78 (Abiowell, China), ATF6 (Abcam, UK), 
LRP1 (Abcam, UK), and β-actin (Abiowell, China). 
Membranes were incubated with primary antibodies at 
4°C overnight, followed by HRP-conjugated secondary 
antibodies. Chemiluminescence was visualized using an 
ECL detection kit, and band intensities were quantified 
with the software ImageJ.

2.11. Statistical analysis

Data were analyzed using the software GraphPad Prism 
8.0 (GraphPad Software, USA). Normally distributed 
data are expressed as the mean ± standard deviation, 
while non-normally distributed data are expressed 
as the median. Between-group comparisons were 
evaluated using the Student's t-test. For comparisons 
involving three or more groups, one-way analysis of 
variance (ANOVA) was used. Qualitative data were 
analyzed using the chi-square test. A P-value < 0.05 was 
considered statistically significant.

3. Results

3.1. Isolation and characterization of OM-MSCs and 
OM-MSCs-Exos

OM-MSCs and OM-MSCs-Exos were successfully 
isolated and characterized. OM-MSCs were extracted 
from the olfactory mucosa of mice and passaged to 
the third generation (P3). Flow cytometry analysis 
revealed that P3 OM-MSCs expressed typical MSC 
surface markers, with positive staining for CD29, 
CD90, and CD44, and negative staining for CD34, 

2.4. Cell experiments

The human neuroblastoma cell line SH-SY5Y (AW-
CCH335, Abiowell, China) was cultured in MEM/F-12 
medium supplemented with 10% FBS and 1% penicillin/
streptomycin at 37°C in a 5% CO₂ incubator. To establish 
an in vitro model of AD, SH-SY5Y cells were treated 
with 20 µM Aβ1-42 for 24 hours (15). For the treatment 
groups, 40 μg/mL of OM-MSCs-Exos, si-NC-Exos, or 
si-LRP1-Exos was added to the culture and incubated for 
12 hours (16).

2.5. TUNEL fluorescence assay

Cell apoptosis was detected using a TUNEL apoptosis 
detection kit (FITC). Tissue sections were deparaffinized 
with xylene, dehydrated through a graded ethanol 
series, and processed using a TUNEL kit (Shanghai 
Yeasen Biotech, China) according to the manufacturer's 
instructions. Sections were incubated with 100 μL of 
proteinase K working solution at 37°C for 20 minutes, 
followed by 100 μL 1× equilibration buffer at room 
temperature for 10–30 minutes. Subsequently, 50 μL 
of TdT incubation buffer was added, and sections were 
incubated at 37°C in the dark for 60 minutes. Nuclei 
were stained with DAPI working solution at 37°C in 
the dark for 10 minutes. After mounting, sections were 
observed under a fluorescence microscope.

2.6. Nissl staining

Tissue sections were deparaffinized with xylene and 
dehydrated through a graded ethanol series before Nissl 
staining. Differentiation was performed using a specific 
differentiation solution. Sections were mounted with 
glycerol and observed under a microscope.

2.7. Immunohistochemistry (IHC)

Brain tissue was dehydrated through a graded ethanol 
series, embedded in paraffin, and sectioned. Sections 
were deparaffinized, rehydrated, and subjected to 
antigen retrieval by heating. They were then incubated 
at 4°C with primary antibodies against GFAP (PTG, 
USA) and IBA1 (Abiowell, China) overnight. After 
they were washed three times with PBS, sections were 
incubated with HRP-conjugated secondary antibodies. 
Color development was achieved using a DAB substrate, 
followed by counterstaining with hematoxylin. Sections 
were subsequently observed under a microscope.

2.8. RT-qPCR

Total RNA was extracted using a Trizol reagent (Thermo, 
USA) and reverse-transcribed into cDNA. RT-qPCR 
was performed using the UltraSYBR Mixture (Beijing 
CWBio, China). Primers were synthesized by Beijing 
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CD45, and CD11b (Figure 1A). These results align with 
established MSC identification standards. Moreover, the 
multilineage differentiation potential of OM-MSCs was 
confirmed through Alizarin Red S staining (to assess 
osteogenic differentiation) and Oil Red O staining (to 
assess adipogenic differentiation) (Figure 1B, C).
	 OM-MSCs-Exos were isolated from the conditioned 
medium of P3–P5 OM-MSCs. NTA showed that the 
particle size of OM-MSCs-Exos ranged from 80–180 
nm, with a peak at 136 nm (Figure 1D). TEM images 
revealed a characteristic double-membrane spherical 
structure, consistent with exosome morphology (Figure 
1E). Additionally, WB analysis confirmed positive 
expression of exosome markers CD9 and CD63 in OM-
MSCs-Exos, while these markers were undetectable 
in OM-MSCs. Calnexin, an endoplasmic reticulum 
marker, was not detected in OM-MSCs-Exos (Figure 
1F). Collectively, these results validated the successful 
isolation and characterization of OM-MSCs and OM-
MSCs-Exos, meeting the established criteria for MSCs 
and exosomes.

3.2. OM-MSCs-Exos improve spatial learning and 
memory in vivo

To investigate the effects of OM-MSCs-Exos on 
cognitive function in mice with AD, behavioral 
experiments were conducted one month after OM-
MSCs-Exos transplantation. These included the MWM 

and NORT to assess spatial learning and memory 
(Figure 2). In the NORT (Figure 2A), mice with AD that 
were treated with Aβ1-42 spent significantly less time 
exploring novel objects, indicating memory impairment 
induced by Aβ1-42. In contrast, OM-MSCs-Exos 
treatment enhanced object recognition ability compared 
to the AD group.
	 In the MWM experiment, mice with AD displayed 
longer escape latencies on days 4 and 5 compared to 
the sham and OM-MSCs-Exos groups (Figure 2B), 
suggesting impaired spatial learning ability in the AD 
group, which improved following OM-MSCs-Exos 
treatment. In a probe test conducted on day 7 of the 
spatial learning experiment, after removing the hidden 
platform, the number of crossings over the original 
platform location and the distance traveled within 90 
seconds were used as indicators of spatial memory. 
Results showed that the OM-MSCs-Exos group 
traveled less distance than the AD group (Figure 2C), 
while the OM-MSCs-Exos group made more platform 
crossings compared to the AD group (Figure 2D), further 
substantiating the contention that OM-MSCs-Exos 
treatment enhances spatial memory.
	 Moreover, the time spent in the target quadrant (Figure 
2E) was significantly longer in the OM-MSCs-Exos 
group than in the AD group, substantiating the cognitive 
improvement induced by OM-MSCs-Exos. To explore 
the underlying mechanism for that, ELISA was used to 
measure Aβ1-42 levels in hippocampal tissue (Figure 

Figure 1. Characterization of OM-MSCs and OM-MSCs-Exos. (A) Flow cytometry analysis of surface markers on OM-MSCs. (B) Alizarin 
Red S staining. (C) Oil Red O staining. (D) Nanoparticle tracking analysis. (E) Transmission electron microscopy. (F) Western blot analysis of 
exosome marker expression.
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2F). Results indicated that Aβ1-42 levels were lower in 
the OM-MSCs-Exos group compared to the AD group, 
suggesting that OM-MSCs-Exos treatment reduces Aβ1-
42 deposition.
	 In summary, compared to mice with AD that were 
treated with PBS, OM-MSCs-Exos transplantation 
significantly improved spatial learning and memory, 
an effect likely associated with reduced Aβ1-42 
accumulation.

3.3. OM-MSCs-Exos suppress neuroinflammation, ER 
stress, and neuronal loss

To examine the effects of OM-MSCs-Exos on 
neuroinflammation, ER stress, and neuronal loss in mice 
with AD, the morphology and number of Nissl bodies 
in brain tissue was first assessed using Nissl staining. 
Results revealed a significant reduction in the number 
and size of Nissl bodies in mice with AD. However, 
in mice with AD that were treated with OM-MSCs-
Exos, the number of Nissl bodies markedly increased, 

indicating that exosomes effectively improve neuronal 
health (Figure 3A).
	 Activated microglia and astrocytes are key markers 
of neuroinflammation. IHC was used to detect the levels 
of expression of GFAP (an astrocyte marker) and Iba1 
(a microglial marker) in the hippocampal region of 
mice with AD. Findings showed a significant increase 
in GFAP- and Iba1-positive cells in mice with AD. 
Following OM-MSCs-Exos treatment, however, the 
activation of these cells decreased substantially (Figure 
3B-E). This suggests that OM-MSCs-Exos may mitigate 
neuroinflammation and protect neurons by suppressing 
astrocyte and microglial activation.
	 Next, TUNEL staining was used to detect apoptosis 
in mouse brain tissue. Results indicated that OM-MSCs-
Exos treatment significantly reduced the number of 
apoptotic cells in the brains of mice with AD (Figure 
3F, G). WB analysis further revealed that OM-MSCs-
Exos treatment upregulated the expression of the anti-
apoptotic protein Bcl-2 while downregulating the pro-
apoptotic proteins Bax and cleaved caspase-3 (Figure 
3H-J). These findings indicate that OM-MSCs-Exos may 
inhibit apoptosis via the Bcl-2/Bax signaling pathway, 
thereby reducing neuronal damage in the mouse model 
of AD.
	 To further validate the anti-inflammatory effects of 
OM-MSCs-Exos, ELISA was used to measure the levels 
of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 
in the brain tissue of mice with AD. Results showed that 
OM-MSCs-Exos treatment significantly reduced the 
concentrations of these cytokines (Figure 3K), suggesting 
that OM-MSCs-Exos may alleviate neuroinflammation 
by suppressing inflammatory cytokine release.
	 ER stress plays a critical role in the progression 
of AD. WB analysis was used to assess the levels of 
expression of the key ER stress-related proteins CHOP, 
GRP78, and ATF6. Results indicated that OM-MSCs-
Exos treatment downregulated the expression of GRP78, 
ATF6, and CHOP (Figure 3L, M). This appropriate 
downregulation of GRP78, ATF6, and CHOP likely 
contributes to alleviating neuronal damage caused by 
excessive ER stress.

3.4. OM-MSCs-Exos ameliorate Aβ1-42-induced ER 
stress, neuroinflammation, and apoptosis in vitro

Aβ1-42 is a key pathogenic factor in AD, and 
its aggregation triggers cellular stress responses, 
including ER stress, neuroinflammation, and apoptosis. 
To validate the bioactivity of OM-MSCs-Exos, 
their protective effects on cell viability, apoptosis, 
inflammation, and ER stress was further evaluated in a 
cellular model of AD.
	 First, the uptake of OM-MSCs-Exos by SH-SY5Y 
cells was observed using fluorescence microscopy. After 
co-incubating PKH67-labeled OM-MSCs-Exos with SH-
SY5Y cells for 6 hours, clear green fluorescence signals 

Figure 2. OM-MSCs-Exos improve spatial learning and memory 
in mice with AD. (A) Novel object recognition test. (B) Escape 
latency in the Morris Water Maze (MWM) (*: Sham vs AD; #: AD 
vs AD+Exos). (C) Distance traveled in the platform quadrant during 
the spatial exploration test. (D) Number of platform crossings during 
the spatial exploration test. (E) Time spent in the platform quadrant 
during the spatial exploration test. (F) ELISA analysis of changes in 
Aβ1-42 levels in the hippocampal tissue of mice with AD. *P < 0.05, 
**P < 0.01 and  ##P < 0.01.
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were detected around the cell nuclei, confirming effective 
internalization of the exosomes (Figure 4A). Cell 
viability and proliferation were then assessed using the 
CCK-8 assay. Compared to the Aβ1-42-treated group, the 
OM-MSCs-Exos-treated group had significantly higher 
SH-SY5Y cell survival rates (Figure 4B), indicating that 
OM-MSCs-Exos effectively mitigate Aβ1-42-induced 
cell damage and promote cell survival.
	 To further evaluate apoptosis, Annexin V/PI dual 
staining flow cytometry was performed. The results 
showed that the total apoptosis rate in the OM-MSCs-

Exos-treated group was lower than that in the Aβ1-42 
group, with a notable reduction in early apoptotic cells 
(Figure 4C, D). WB analysis of levels of Bcl-2, Bax, and 
cleaved caspase-3 expression revealed that OM-MSCs-
Exos treatment upregulated Bcl-2 while downregulating 
Bax and cleaved caspase-3 (Figure 4E-G). These findings 
further support the hypothesis that OM-MSCs-Exos 
inhibit apoptosis via the Bcl-2/Bax signaling pathway, 
exerting a neuroprotective effect.
	 Additionally, to investigate the suppression of Aβ1-
42-induced neuroinflammatory cytokine release by OM-

Figure 3. Neuroprotective effects of OM-MSCs-Exos in mice with AD. (A) Nissl staining of mouse brain tissue. (B, C) Immunohistochemical 
(IHC) staining and analysis of GFAP expression in the hippocampal region of mice. (D, E) IHC staining and analysis of Iba1 expression in the 
hippocampal region of mice. (F, G) TUNEL staining of mouse brain tissue. (H-J) Western blot analysis of levels of Bcl-2, Bax, and cleaved 
caspase-3 expression in mouse brain tissue. (K) ELISA analysis of TNF-α, IL-1β, and IL-6 levels in mouse brain tissue. (L, M) Western blot 
analysis of levels of CHOP, GRP78, and ATF6 expression in mouse brain tissue. *P < 0.05 and **P < 0.01.
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MSCs-Exos, ELISA was used to measure TNF-α, IL-1β, 
and IL-6 levels in SH-SY5Y cell culture medium. Results 
indicated that OM-MSCs-Exos treatment inhibited the 
release of these inflammatory cytokines compared to the 
Aβ1-42 group (Figure 4H), indicating that OM-MSCs-
Exos suppress Aβ1-42-induced neuroinflammation.
	 To further assess the regulation of ER stress by OM-
MSCs-Exos, WB analysis was used to measure the 
levels of expression of the key ER stress-related proteins 
GRP78, ATF6, and CHOP. Results showed that OM-
MSCs-Exos treatment downregulated GRP78, ATF6, and 
CHOP expression (Figure 4I, J). These findings suggest 
that OM-MSCs-Exos may alleviate Aβ1-42-induced ER 
stress by modulating the ER stress response, thereby 
protecting cells from stress-induced damage.

3.5. OM-MSCs-Exos mitigate Aβ1-42-induced ER 
stress, neuroinflammation, and apoptosis via LRP1

Although the above experiments confirmed the 
neuroprotective effects of OM-MSCs-Exos in models of 
AD, the precise molecular mechanisms remain unclear. 
This study further explored the role of key proteins 
in OM-MSCs-Exos in neuronal repair and cognitive 
recovery. Proteomic analysis revealed that OM-MSCs-
Exos are enriched in exosome-related proteins. Xun 
et al. (17) identified 304 proteins secreted by OM-
MSCs that are closely associated with neurotrophy, 
cell growth, differentiation, apoptosis, inflammation, 
and neuronal repair. Notably, OM-MSCs-Exos express 
LRP1. Previous studies have shown that LRP1 can 
suppress neuroinflammation and ER stress (18-20). 

Thus, the hypothesis was that OM-MSCs-Exos have a 
neuroprotective effect in the cellular model of AD via 
LRP1.
	 First, WB analysis revealed that LRP1 expression was 
downregulated in the cellular model of AD, while OM-
MSCs-Exos treatment partially restored LRP1 expression 
(Figure 5A-B). These findings suggest that LRP1 may be 
involved in the neuroprotective effects mediated by OM-
MSCs-Exos. To further validate this, LRP1 expression 
in OM-MSCs was silenced using siRNA, which reduced 
LRP1 mRNA expression in OM-MSCs-Exos (Figure 
5C), confirming the efficacy of siRNA silencing. In 
the cellular model of AD, OM-MSCs-Exos treatment 
increased cell viability (Figure 5D), whereas the si-
LRP1 intervention group exhibited reduced cell viability, 
indicating that LRP1 is linked to the neuroprotective 
effects of OM-MSCs-Exos. Furthermore, Annexin V/
PI flow cytometry analysis showed that OM-MSCs-
Exos treatment reduced apoptosis, while the si-LRP1 
intervention group exhibited a significantly higher 
apoptosis rate (Figure 5E, F), corroborating LRP1's role 
in apoptosis regulation.
	 Additional WB analysis demonstrated that OM-
MSCs-Exos treatment upregulated the anti-apoptotic 
protein Bcl-2 and downregulated the pro-apoptotic 
proteins Bax and cleaved caspase-3. However, si-LRP1 
intervention reversed these protective effects, as evinced 
by increased Bax and cleaved caspase-3 expression and 
decreased Bcl-2 expression (Figure 5G-I). Moreover, 
ELISA results showed that OM-MSCs-Exos treatment 
significantly inhibited the release of the Aβ1-42-induced 
pro-inflammatory cytokines TNF-α, IL-1β, and IL-

Figure 4. Neuroprotective effects of OM-MSCs-Exos in an Aβ1-42-induced SH-SY5Y cell model. (A) Fluorescence images of PKH67-
labeled OM-MSCs-Exos co-cultured with SH-SY5Y cells. (B) CCK-8 assay to examine cell viability. (C, D) Annexin V/PI double staining flow 
cytometry to detect apoptosis. (E-G) Western blot analysis of Bcl-2, Bax, and cleaved caspase-3 levels. (H) ELISA assessment of TNF-α, IL-1β, 
and IL-6 levels in cell supernatant. (I, J) Western blot analysis of levels of CHOP, GRP78, and ATF6 expression. *P < 0.05 and **P < 0.01.
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6, whereas the si-LRP1 intervention group exhibited 
increased cytokine release (Figure 5J).
	 Finally, to explore LRP1's role in ER stress, the levels 
of expression of the ER stress-related proteins CHOP, 
GRP78, and ATF6 were examined. OM-MSCs-Exos 
treatment downregulated GRP78, ATF6, and CHOP 
expression, indicating that OM-MSCs-Exos mitigate 
cellular damage by regulating ER stress. In contrast, the 
si-LRP1 intervention group showed an increased ER 
stress response compared to the OM-MSCs-Exos-treated 
group (Figure 5K, L).

3.6. Downregulation of LRP1 attenuates OM-MSCs-
Exos-mediated improvements in spatial learning and 
memory in mice with AD

To further investigate whether LRP1 is a key molecule 

in OM-MSCs-Exos-mediated cognitive improvement 
in vivo, C57BL/6 mice were randomly divided into five 
groups: a sham group, an AD group, an AD+OM-MSCs-
Exos group, an AD+si-NC-Exos group, and an AD+si-
LRP1-Exos group. After 4 weeks of treatment, cognitive 
behavioral tests, including the NORT and MWM, were 
performed (Figure 6A-E).
	 In the NORT, mice with AD spent less time exploring 
novel objects, indicating memory impairment due to 
Aβ1-42 treatment. OM-MSCs-Exos treatment enhanced 
object recognition ability compared to the AD group. 
However, the si-LRP1-Exos group spent less time 
exploring, suggesting that LRP1 suppression diminished 
the memory-enhancing effects of OM-MSCs-Exos 
(Figure 6A).
	 In the MWM test, differences in escape latency 
were observed on days 4 and 5. Compared to the AD 

Figure 5. OM-MSCs-Exos alleviate Aβ1-42-induced SH-SY5Y cell damage by regulating LRP1 expression. (A, B) Western blot analysis of 
changes in LRP1 expression. (C) qPCR quantification of LRP1 mRNA expression. (D) CCK-8 assay for cell viability. (E, F) Annexin V/PI flow 
cytometry analysis of cell apoptosis. (G-I) Western blot analysis of levels of Bcl-2, Bax, and cleaved caspase-3 expression. (J) ELISA assessment 
of TNF-α, IL-1β, and IL-6 levels. (K, L) Western blot analysis of GRP78, ATF6, and CHOP expression. *P < 0.05 and **P < 0.01.
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Figure 6. Downregulation of LRP1 attenuates the cognitive enhancement brought about by OM-MSCs-Exos in mice with AD. (A) Novel 
object recognition test. (B) Escape latency in the MWM (*: Sham vs AD; #: AD vs AD+Exos; s:AD+si-NC-Exos vs AD+si-LRP1-Exos). (C) 
Distance traveled in the platform quadrant during the spatial exploration test. (D) Number of platform crossings during the spatial exploration 
test. (E) Time spent in the platform quadrant during the spatial exploration test. (F, G) IHC analysis of GFAP expression in the hippocampal 
region of mice. (H, I) IHC analysis of Iba1 expression in the hippocampal region of mice. (J, K) TUNEL detection of apoptosis in brain tissue. 
(L-N) Western blot analysis of Bcl-2, Bax, and cleaved caspase-3 expression. (O) ELISA analysis of TNF-α, IL-1β, and IL-6 levels in mouse 
brain tissue. (P-Q) Western blot analysis of GRP78, ATF6, and CHOP expression in mouse brain tissue. *P < 0.05, **P < 0.01, #P < 0.01, ##P < 0.05, 
and ssP < 0.01.
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group, OM-MSCs-Exos-treated mice had shorter escape 
latencies, indicating improved spatial learning ability. 
However, the si-LRP1-Exos group had slightly longer 
escape latencies, suggesting that LRP1 suppression 
diminished the ability of OM-MSCs-Exos to enhance 
spatial learning (Figure 6B). The number of crossings 
over the original platform location (Figure 6D) and 
distance traveled (Figure 6C) within 90 seconds revealed 
that the OM-MSCs-Exos group crossed the platform 
more frequently and traveled less distance than the AD 
group, confirming the efficacy of OM-MSCs-Exos in 
enhancing spatial memory. In contrast, the si-LRP1-
Exos group made fewer crossings and traveled a longer 
distance compared to the si-NC-Exos group, indicating 
that LRP1 suppression attenuated the spatial memory 
improvements mediated by OM-MSCs-Exos.
	 Furthermore, OM-MSCs-Exos-treated mice 
spent more time in the target quadrant than the AD 
group, reflecting enhanced spatial memory and target 
recognition ability. Compared to the si-NC-Exos group, 
the si-LRP1-Exos group spent less time in the target 
quadrant, further corroborating the critical role of LRP1 
in OM-MSCs-Exos-mediated cognitive protection 
(Figure 6E).

3.7. Downregulation of LRP1 attenuates the effects 
of OM-MSCs-Exos on cognitive improvement and 
amelioration of ER stress, neuroinflammation, and 
apoptosis in vivo

To investigate the neuroprotective role of LRP1 in 
AD pathogenesis, IHC was used to analyze the levels 
of expression of the microglial marker Iba1 and the 
astrocytic marker GFAP in the hippocampal tissue 
of mice with AD (Figure 6F-I). Results showed that 
the OM-MSCs-Exos group had significantly reduced 
Iba1 and GFAP expression compared to the AD group, 
indicating that OM-MSCs-Exos effectively suppress 
neuroinflammatory responses. However, Iba1 and 
GFAP expression increased in the si-LRP1-Exos group 
compared to the si-NC-Exos group, suggesting that 
LRP1 suppression diminished the anti-inflammatory 
effects of OM-MSCs-Exos.
	 TUNEL staining was used to detect apoptosis in 
mouse brain tissue (Figure 6J, K). Results revealed 
that the OM-MSCs-Exos group had significantly 
fewer apoptotic cells than the AD group, indicating 
that OM-MSCs-Exos effectively inhibit neuronal 
apoptosis in mice with AD. However, the number of 
apoptotic cells increased significantly in the si-LRP1-
Exos group compared to the si-NC-Exos group, further 
demonstrating that LRP1 suppression diminished the 
neuroprotective effects of OM-MSCs-Exos.
	 To further evaluate changes in the apoptosis 
signaling pathway, WB analysis was performed to 
assess the levels of Bcl-2, Bax, and cleaved caspase-3 
expression. Compared to the AD group, the OM-MSCs-

Exos group displayed upregulated Bcl-2 expression and 
downregulated Bax and cleaved caspase-3 expression, 
indicating that OM-MSCs-Exos effectively suppress the 
activation of the apoptosis signaling pathway (Figure 
6L-N). However, levels of Bax and cleaved caspase-3 
expression significantly increased in the si-LRP1-Exos 
group while Bcl-2 expression decreased. These findings 
further suggest that LRP1 suppression diminishes the 
inhibitory effect of OM-MSCs-Exos on the apoptosis 
signaling pathway.
	 ELISA was used to measure the levels of pro-
inflammatory cytokines TNF-α, IL-1β, and IL-6 in mouse 
brain tissue. Results showed that the OM-MSCs-Exos 
group had significantly lower levels of these cytokines 
compared to the AD group (Figure 6O), indicating that 
OM-MSCs-Exos effectively suppress inflammation. 
However, the levels of these inflammatory cytokines 
increased in the si-LRP1-Exos group compared to the 
OM-MSCs-Exos group, further demonstrating that LRP1 
suppression diminished the anti-inflammatory effects of 
exosomes.
	 Finally, to investigate changes in ER stress, WB 
analysis was used to assess the levels of expression of 
the ER stress-related proteins CHOP, GRP78, and ATF6. 
The OM-MSCs-Exos group had significantly reduced 
CHOP, GRP78, and ATF6 expression compared to the 
AD group (Figure 6P, Q), indicating that OM-MSCs-
Exos effectively alleviate ER stress in mice with AD. 
However, levels of CHOP, GRP78, and ATF6 expression 
increased again in the si-LRP1-Exos group, suggesting 
that LRP1 suppression diminished the protective effects 
of OM-MSCs-Exos on ER stress alleviation.

4. Discussion

AD is a complex neurodegenerative disorder typically 
characterized by a progressive decline in cognitive 
function and neuronal dysfunction (21). The pathological 
progression of AD is driven by multiple factors, with 
neuroinflammation and ER stress being considered 
key contributors (22,23). The hallmark pathological 
features of AD are the deposition of Aβ and the abnormal 
phosphorylation of tau protein. These aberrant changes 
not only directly impair neurons but also exacerbate 
disease progression by triggering neuroinflammatory 
responses (24). In the brains of patients with AD, 
persistent low-level neuroinflammation is commonly 
observed, with the activation of microglia and astrocytes 
being considered the primary sources of inflammation 
(25). Elevated levels of pro-inflammatory cytokines, 
such as TNF-α, IL-6, and IL-1β, contribute to 
neuronal damage and dysfunction, thereby promoting 
neurodegeneration (26).
	 ER stress also plays an important role in the 
pathological development of AD (27). When misfolded 
proteins accumulate in the ER, the unfolded protein 
response (UPR) is activated to restore ER homeostasis. 
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However, prolonged or severe ER stress can trigger pro-
apoptotic signaling pathways, particularly in neurons, 
making it a significant contributor to cell death in AD 
(28). Aβ deposition is recognized as a key inducer of ER 
stress, disrupting ER function and thereby amplifying 
neuronal damage (29). In the current study, levels of the 
pro-inflammatory cytokines IL-1β, IL-6, and TNF-α 
were significantly elevated in a mouse model of AD, 
and ER-associated proteins such as CHOP, GRP78, and 
ATF6 were markedly upregulated. Immunofluorescence 
staining further revealed a significant increase in 
the activation of Iba1-positive microglia and GFAP-
positive astrocytes in the hippocampal region. These 
findings suggest that suppressing neuroinflammation and 
excessive ER stress may offer potential benefits in terms 
of alleviating AD-related neurological deficits.
	 In recent years, MSCs have shown considerable 
promise in the treatment of various neurodegenerative 
diseases (30). Traditionally, MSCs are derived from 
mesodermal tissues such as bone marrow and adipose 
tissue. These MSCs display some neuroprotective effects 
in terms of neural repair, but there are several with their 
clinical use, including limited neurogenic differentiation 
potential, ethical concerns, and difficulties in crossing 
the BBB (31). In contrast, OM-MSCs, which originate 
from ectodermal tissue, demonstrate greater neurogenic 
differentiation potential, positioning them as a more 
promising candidate for neural repair. Moreover, OM-
MSCs can be isolated from human nasal mucosa via 
minimally invasive procedures, offering excellent 
biosafety and circumventing the ethical controversies 
associated with other stem cell sources. However, there 
are obstacles to the direct transplantation of OM-MSCs, 
such as challenges in crossing the BBB and potential 
tumorigenic risks. Unlike stem cells, exosomes derived 
from stem cells cannot self-replicate, eliminating the 
risk of tumor formation associated with stem cell 
transplantation (21). Consequently, exosomes have 
emerged as a safer and more effective therapeutic 
strategy. Exosomes are vesicles enclosed by a lipid 
bilayer, distinguished by the presence of tetraspanins 
(CD9, CD81, and CD63), ALG-2-interacting protein 
X (Alix), and tumor susceptibility gene 101 protein 
(TSG101) on their membrane surface (32). They can 
carry a variety of bioactive molecules, including proteins, 
nucleic acids, and lipids, and are capable of crossing the 
BBB to deliver therapeutic agents, making them a focal 
point in research on neurodegenerative diseases such as 
AD, stroke, and traumatic brain injury (33,34).
	 The current study successfully isolated and 
characterized OM-MSCs-Exos. TEM, NTA, and 
WB confirmed that these exosomes exhibit a typical 
lipid bilayer structure and express exosome markers. 
Further immunofluorescence staining demonstrated 
that PKH67-labeled OM-MSCs-Exos were effectively 
internalized by cells. These results indicate that OM-
MSCs-Exos significantly inhibited the activation of 

microglia and astrocytes in the hippocampus, reduced 
the release of pro-inflammatory cytokines in brain 
tissue, and lowered the levels of expression of ER 
stress-related proteins. These effects were closely 
associated with significant improvements in cognitive 
function and reduced neuronal apoptosis in mice with 
AD. Conventional ultracentrifugation was used during 
the isolation of OM-MSCs-Exos. However, the purity 
and yield of exosomes may be influenced by factors 
such as cell culture conditions and centrifugation 
parameters, which could potentially interfere with 
subsequent results (35,36). Moreover, fluorescence 
labeling experiments have demonstrated that OM-
MSCs-Exos can be taken up by cells, but their specific 
sites of action and underlying mechanisms within the 
cells remain unclear. To address this, more in-depth 
studies, possibly utilizing techniques such as confocal 
microscopy, may need to be conducted.
	 To further elucidate the neuroprotective mechanisms 
of OM-MSCs-Exos, the proteomic profile of OM-
MSCs-Exos as reported by Xun et al. (17) was 
analyzed, and enrichment of LRP1 in these exosomes 
was noted. Previous studies have demonstrated that 
LRP1 plays a critical role in regulating the activation 
of microglia and astrocytes as well as modulating 
inflammatory responses (18,37,38). Additionally, 
LRP1 influences ER stress-related signaling pathways, 
impacting cell survival and function (39). The current 
findings revealed that LRP1 expression decreased 
significantly in a mouse model of AD, while ER 
stress and pro-inflammatory cytokine levels increased 
markedly. Following OM-MSCs-Exos treatment, 
however, LRP1 expression in mouse brain tissue 
increased, accompanied by an alleviation of both ER 
stress and inflammatory responses. Further experiments 
that used siRNA to silence LRP1 expression in 
OM-MSCs demonstrated that the neuroprotective 
effects of OM-MSCs-Exos in suppressing ER stress 
and neuroinflammation significantly diminished, 
underscoring the central  role  of  LRP1 in the 
neuroprotective mechanisms of OM-MSCs-Exos 
treatment. However, the pathogenesis of AD is highly 
complex, involving the interplay of multiple cell types 
and signaling pathways (40). In addition to the known 
mechanisms, OM-MSCs-Exos may have an effect 
through other as yet unidentified pathways.
	 From a clinical translation perspective, the long-
term stability, dose-dependency, and immunogenicity 
of exosomes warrant further evaluation. Although this 
study has demonstrated that OM-MSCs-Exos improve 
cognitive function in AD, their therapeutic efficacy 
across different stages of AD remains unclear. Future 
research could utilize multi-omics approaches, such as 
single-cell transcriptomics and protein interactomics, 
to further clarify the mechanisms of OM-MSCs-
Exos and optimize their therapeutic potential through 
pharmacological enhancement.
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5. Conclusion

This study provides the first evidence that OM-MSCs-
Exos can significantly enhance cognitive function in mice 
with AD. The neuroprotective effects of OM-MSCs-
Exos appear to be mediated through the suppression of 
neuroinflammatory responses, attenuation of microglial 
and astrocytic activation, and reduction in the expression 
of pro-inflammatory cytokines and ER stress markers, 
thereby mitigating neuronal damage. Furthermore, LRP1 
may play a key role in these protective mechanisms. 
These findings provide novel insights into the molecular 
pathways underlying the therapeutic potential of OM-
MSCs-Exos in the treatment of AD. However, despite 
these promising results, further research is required 
to evaluate the long-term stability, dose dependency, 
and immunogenicity of OM-MSCs-Exos, as well as to 
validate their clinical applicability and safety.
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1. Introduction

Cancer has become the second leading cause of death 
worldwide, resulting in approximately 9.6 million 
deaths and 182.8 million years of life lost (1). Immune 
checkpoint inhibitors (ICIs) have revolutionized the 
treatment of malignancies and have been used to treat 
many different types of cancer. ICIs enhance the body's 
immune response to cancer cells by blocking negative 
regulatory factors expressed on immune cells or tumor 
cells through a unique mechanism. ICIs mainly consist of 
cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors, 
programmed cell death protein (PD)-1 inhibitors (PD-1), 
and PD-ligand 1 inhibitors (PD-L1) (2,3). However, the 

expanded indications for ICIs and their increased use has 
led to the discovery of a large number of adverse events 
associated with ICIs, termed immune-related adverse 
events (IRAEs), in clinical settings.
	 Studies have shown that IRAEs are caused by an 
overactive immune response, primarily in the skin, 
endocrine, hepatic, and pulmonary systems (4,5). Owing 
to its unique immune characteristics, the liver is one 
of the organs most susceptible to the effects of tumor 
immunotherapy. Hepatitis caused by ICI treatment is 
commonly referred to as ICI-induced immune-mediated 
hepatitis (IMH). Research indicates that IMH is the third 
most common IRAE, with an incidence ranging from 
5% to 10% (6), followed by skin toxicity (44%-68%) 
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SUMMARY: Immune checkpoint inhibitors (ICIs) have been widely used in various types of cancer, but they 
have also led to a significant number of adverse events, including ICI-induced immune-mediated hepatitis (IMH). 
This study aimed to explore the risk factors for IMH in patients treated with ICIs and to develop and validate a new 
nomogram model to predict the risk of IMH. Detailed information was collected between January 1, 2020, and 
December 31, 2023. Univariate logistic regression analysis was used to assess the impact of each clinical variable 
on the occurrence of IMH, followed by stepwise multivariate logistic regression analysis to determine independent 
risk factors for IMH. A nomogram model was constructed based on the results of the multivariate analysis. The 
performance of the nomogram model was evaluated via the area under the receiver operating characteristic curve 
(AUC), calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) analysis. A total of 216 
(8.82%) patients developed IMH. According to stepwise multivariate logistic analysis, hepatic metastasis, the TNM 
stage, the WBC count, LYM, ALT, TBIL, ALB, GLB, and ADA were identified as risk factors for IMH. The AUC 
for the nomogram model was 0.817 in the training set and 0.737 in the validation set. The calibration curves, DCA 
results, and CIC results indicated that the nomogram model had good predictive accuracy and clinical utility. The 
nomogram model is intuitive and straightforward, making it highly suitable for rapid assessment of the risk of IMH 
in patients receiving ICI therapy in clinical practice. Implementing this model enables early adoption of preventive 
and therapeutic strategies, ultimately reducing the likelihood of immune-related adverse events (IRAEs), and 
especially IMH.

Keywords: ICIs, IMH, influencing factors, risk model
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and gastrointestinal adverse reactions (35%-50%) (7). 
Although most cases of IMH are asymptomatic and can 
be appropriately controlled with supportive therapy and 
corticosteroids (8), improper diagnosis or management 
can lead to immunotherapy failure, acute liver failure, 
and death, especially in patients with chronic liver 
disease (9,10). Previous studies have suggested that IMH 
accounts for a high proportion of fatal IRAEs. According 
to data from a global database on fatal IRAEs, 124 of 
the 613 reported deaths were associated with IMH (11). 
Similarly, a study by Wang et al. found that among 21 
melanoma patients who died from IRAEs, 5 deaths 
(23.8%) were caused by IMH (12).
	 The mechanisms by which ICIs cause IMH have 
yet to be fully elucidated, and data on the clinical risk 
factors for IMH are very limited. Most importantly, there 
is no clinical model with which to accurately assess the 
risk of IMH in patients. This makes the prevention and 
management of IMH in patients receiving ICI therapy 
particularly challenging in clinical practice. Therefore, 
identifying the risk factors associated with IMH and 
predicting the risk of IMH in patients receiving ICI 
therapy is highly clinically important. This information 
will help clinicians quickly identify high-risk IMH 
patients and manage them individually, ultimately 
reducing the incidence of IMH at its source. In current 
clinical research, nomogram models are widely used 
to explore risk factors and predict risk (13). Su et al. 
recruited 2,281 consecutive patients with hepatitis 
B-related hepatocellular carcinoma from four tertiary 
hospitals in China from April 2011 to March 2022 (14). 
They utilized multivariate Cox regression to establish 
a nomogram risk prediction model, which accurately 
predicted the mortality risk of patients and effectively 
identified high-risk patients.
	 Therefore, the current study aimed to investigate the 
risk factors for IMH in patients receiving ICI therapy 
and to develop and validate a new nomogram model to 
predict the risk of IMH. Ultimately, this model will guide 
personalized strategies to prevent IMH.

2. Materials and Methods

2.1. Subjects and inclusion and exclusion criteria

This study collected relevant information from 2,663 
cancer patients who received ICI therapy at Chongqing 
University Cancer Hospital from January 1, 2020, to 
December 31, 2023. The collected data include basic 
patient information such as sex, age, and body mass 
index (BMI); tumor-related data such as liver metastasis, 
TNM stage, and Karnofsky performance status (KPS); 
and biomarker data such as lymphocyte (LYM), white 
blood cell (WBC), and platelet (PLT) counts and alanine 
transaminase (ALT), aspartate transaminase (AST), 
albumin (ALB), globulin (GLB), total bilirubin (TBIL), 
alkaline phosphatase (AKP), adenosine deaminase 

(ADA), C-reactive protein (CRP), and β2-microglobulin 
(β2-MG) levels. The definition of IMH in this study was 
based on the Guidelines for the Diagnosis and Treatment 
of Autoimmune Hepatitis (2021) (15,16). The diagnostic 
criteria include elevated serum aminotransferase levels, 
positive serum autoantibodies, elevated IgG levels, and 
characteristic histological changes in the liver, while 
excluding other potential causes. All blood tests were 
conducted in the laboratory of Chongqing University 
Cancer Hospital. Informed consent was obtained from 
each patient. This study was conducted in accordance 
with the guidelines outlined in the Declaration of 
Helsinki and received ethical approval from the Ethics 
Committee of Chongqing University Cancer Hospital.
	 The inclusion criteria for this study were as follows: 
i) age ≥ 18 years; ii) hospitalized at least once; and 
iii) received ICI therapy with any of three inhibitors: 
CTLA-4, PD-1, or PD-L1. The exclusion criteria were 
as follows: i) missing critical pathological data such as 
ALT, AST, PLT, ALB, GLB, and ADA; ii) death within 
48 hours of admission; iii) chronic hepatitis due to 
other causes, such as viral hepatitis, alcoholic hepatitis, 
nonalcoholic fatty liver disease, drug-induced liver 
disease, schistosomiasis, and other parasitic infections 
causing liver disease; iv) concurrent autoimmune liver 
diseases, such as primary biliary cirrhosis, primary 
sclerosing cholangitis, and overlap syndromes; v) 
primary liver cancer; and vi) combined use of two 
or more inhibitors. After applying the inclusion and 
exclusion criteria, 2,448 patients were included in the 
model, as shown in Figure 1.

2.2. Model construction and validation

Patients meeting the inclusion and exclusion criteria were 
randomly divided into a training cohort (n = 1,714) and 
a validation cohort (n = 734) at a 7:3 ratio. This process 
was implemented via the "caret" package in R software, 
with a fixed random seed number used throughout the 
study. In the training cohort, univariate logistic regression 
analysis was used to assess the impact of each clinical 
variable on the occurrence of IMH in patients. Variables 
with a p value < 0.2 in the results were then included 
in stepwise multivariate logistic regression analysis to 
identify independent factors influencing the development 
of IMH. A nomogram model was constructed on the 
basis of these results. The performance of the nomogram 
model was validated in the validation cohort. The 
discriminative ability of the nomogram was assessed 
via the area under the receiver operating characteristic 
curve (AUC). Calibration curves were generated via the 
bootstrap method with 1,000 resamples to validate the 
predictive accuracy of the nomogram in both the training 
and validation sets. The Hosmer-Lemeshow test was used 
to evaluate the goodness of fit of the nomogram model. 
Decision curve analysis (DCA) and clinical impact curve 
(CIC) analysis were performed via the "rmda" package 

(203)
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patients without IMH were older and had a higher WBC 
and PLT count, whereas those with IMH had higher 
levels of LYM, ALT, AST, ALB, GLB, TBIL, AKP, 
ADA, and β2-MG. Details are shown in Table 1.

3.2. Characteristics of the training and validation cohorts

This study used random sampling to allocate the 2,448 
patients into the training and validation cohorts, with 
1,714 patients in the training cohort and 734 patients 
in the validation cohort, while maintaining a 7:3 split 
ratio. As shown in Table 2, there were no significant 
differences between the training and validation cohorts (p 
values for all  > 0.05).

3.3. Factors influencing the development of IMH

Univariate and stepwise multivariate logistic regression 
analyses were performed with the training cohort to 
investigate the factors affecting the occurrence of IMH 
in patients receiving ICI therapy. The detailed results are 
shown in Table 3. According to stepwise multivariate 
logistic analysis, several factors were found to increase 
the likelihood of developing IMH to varying degrees: 
hepatic metastasis, TNM stage IV, WBC, LYM, ALT, 
TBIL, ALB, GLB, and ADA. Hepatic metastasis and 
TNM stage IV disease in particular were associated 
with the greatest increase in IMH risk, with a 63% 
and 61% greater likelihood than in patients without 
hepatic metastasis or those with TNM stage III disease. 
Interestingly, age was a protective factor according to 
univariate and stepwise multivariate logistic analyses. 

to evaluate the practical value of the nomogram model in 
clinical settings.

2.3. Statistical analysis

For normally distributed data, the mean ± SD was used 
for description, and a t-test was used for comparison. For 
nonnormally distributed data, the median (M), P25, and 
P75 were used for description, and nonparametric tests 
were used for comparison. Categorical data are expressed 
as frequencies and percentages, and comparisons were 
made via the chi-square test. Missing data were filled in 
with the "mice" package. All of the statistical analyses 
were performed using R version 4.1.2, and statistical 
significance was defined as a two-tailed p value < 0.05.

3. Results

3.1. Clinical characteristics of subjects

After applying the inclusion and exclusion criteria, 
2,448 study subjects were retained, 216 (8.82%) of 
whom developed IMH. The median age of the included 
subjects was 59.00 years, and 75.82% were male. 
Additionally, more than half of the patients had a BMI 
of 18.5-23.9, were in TNM stage IV, and did not have 
hepatic metastases, with proportions of 57.92%, 66.79%, 
and 87.95%, respectively. Significant differences were 
observed between patients with and without IMH in 
terms of age, Karnofsky Performance Scale (KPS) score, 
and all hematological indices except for C-reactive 
protein (CRP) (p values for all < 0.05). Specifically, 

Figure 1. Flow chart for patients enrolled in the final study cohorts.
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Table 1. Demographic and clinical characteristics of patients with or without IMH

Variables

Age (years)
Sex
     Female
     Male
BMI (%)
     18.5-23.9
     24-27.9
     ≥ 28
     < 18.5
TNM (%)
     III
     IV
KPS
Hepatic metastases (%)
     No
     Yes
WBC (109/L)
PLT (109/L)
LYM (109/L)
ALT (U/L)*
AST (U/L)*
ALB (g/L)
GLB (g/L)
TBIL (μmol/L)*
AKP (U/L)*
ADA (U/L)
CRP (mg/L)*
β2-MG (mg/L)

Total (n = 2,448)

  59.05 ± 10.89

   592 (24.18)
1,856 (75.82)

1,418 (57.92)
   685 (27.98)
 129 (5.27)
 216 (8.82)

   813 (33.21)
1,635 (66.79)
82.40 ± 7.63

2,153 (87.95)
  295 (12.05)
  7.53 ± 4.22

216.61 ± 90.08
  1.05 ± 0.53

23.00 [15.00, 39.00]
24.00 [18.00, 35.50]

37.10 ± 5.41
30.70 ± 6.60

9.01 [6.58, 12.59]
  88.00 [71.00, 113.62]

10.75 ± 5.70
7.54 [2.66, 37.88]

  3.03 ± 1.28

Note: *Expressed as the median (M) [P25, P75].

No-IMH (n = 2,232)

  59.47 ± 10.79

   543 (91.72)
1,689 (91.00)

1,292 (91.11)
   628 (91.68)
   112 (86.82)
   200 (92.59)

   727 (89.42)
1,505 (92.05)
82.27 ± 7.62

1,959 (90.99)
   273 (92.54)
  7.68 ± 4.30

217.72 ± 89.50
  1.03 ± 0.52

22.00 [15.00, 36.00]
23.25 [18.00, 34.00]

37.03 ± 5.43
30.43 ± 6.48

8.84 [6.52, 12.15]
  86.00 [70.00, 110.05]

10.32 ± 5.28
7.56 [2.66, 36.36]

  3.00 ± 1.26

IMH (n = 216)

  54.69 ± 11.04

  49 (8.28)
167 (9.00)

126 (8.98)
  57 (8.32)

    17 (13.18)
  16 (7.41)

    86 (10.58)
130 (7.95)

83.75 ± 7.55

194 (9.01)
  22 (7.46)

  5.96 ± 2.88
205.21 ± 95.38
  1.21 ± 0.56

  36.75 [20.00, 73.00]
  40.00 [23.00, 63.78]

37.85 ± 5.19
33.47 ± 7.22

11.09 [7.81, 16.41]
  110.00 [82.75, 165.25]

15.15 ± 7.69
  7.20 [2.53, 43.79]

  3.29 ± 1.48

p value

< 0.001
   0.649

   0.284

   0.037

   0.006
   0.440

< 0.001
   0.051
< 0.001
< 0.001
< 0.001
   0.032
< 0.001
< 0.001
< 0.001
< 0.001
   0.762
   0.002

Table 2. Clinical characteristics of the training and validation cohorts

Variables

Age (years)
Sex
     Female
     Male
BMI (%)
     18.5-23.9
     24-27.9
     ≥ 28
     < 18.5
TNM (%)
     III
     IV
KPS
Hepatic metastases (%)
     No
     Yes
WBC (109/L)
PLT (109/L)
LYM (109/L)
ALT (U/L)*
AST (U/L)*
ALB (g/L)
GLB (g/L)
TBIL (μmol/L)*
AKP (U/L)*
ADA (U/L)
CRP (mg/L)*
β2-MG (mg/L)

Training cohort (n = 1,714)

  58.97 ± 10.88

   407 (23.75)
1,307 (76.25)

1,003 (58.52)
   465 (27.13)
   91 (5.31)
 155 (9.04)

   563 (32.85)
1,151 (67.15)
82.23 ± 7.70

1,504 (87.75)
   210 (12.25)
  7.57 ± 4.14

217.82 ± 90.54
  1.07 ± 0.54

23.00 [15.00, 38.85]
24.00 [18.00, 35.00]

36.99 ± 5.45
30.62 ± 6.51

8.98 [6.54, 12.38]
  88.00 [71.00, 114.00]

10.70 ± 5.63
7.53 [2.58, 35.75]

  3.02 ± 1.27

Note: *Expressed as the median (M) [P25, P75].

Validation cohort (n = 734)

  59.23 ± 10.91

185 (25.20)
549 (74.80)

415 (56.54)
220 (29.97)
38 (5.18)
61 (8.31)

250 (34.06)
484 (65.94)
82.79 ± 7.44

649 (88.42)
  85 (11.58)
  7.44 ± 4.40

213.80 ± 88.99
  1.01 ± 0.51

23.00 [15.00, 41.54]
24.60 [18.00, 38.75]

37.37 ± 5.30
30.88 ± 6.82

9.05 [6.66, 12.88]
  86.40 [71.00, 111.00]

10.87 ± 5.86
7.59 [2.86, 39.64]

  3.05 ± 1.31

p value

0.583
0.471

0.540

0.591

0.094
0.689

0.498
0.312
0.130
0.697
0.127
0.109
0.386
0.231
0.219
0.492
0.635
0.619
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For each 1-year increase in age, the likelihood of 
developing IMH decreased by 4%.

3.4. Construction and evaluation of the nomogram model

Based on the results of stepwise multivariate logistic 
regression analysis, a nomogram model was constructed 
to predict the risk of IMH in patients receiving ICI 
therapy, as shown in Figure 2A. The total score is 
obtained by adding the scores for each factor and then 
locating the corresponding IMH risk level on the scale. 
According to the nomogram, TBIL has the greatest 

impact on predicting IMH risk, followed by GLB, WBC, 
and age. LYM, ALT, ALB, and ADA have a moderate 
impact on predicting IMH risk in patients with breast 
cancer undergoing chemotherapy.
	 The nomogram model had an AUC of 0.817 (95% 
CI: 0.782-0.852) in the training set and 0.737 (95% 
CI: 0.664-0.811) in the validation set, indicating good 
performance. The model effectively identified risk levels, 
with ROC curve results (Figure 2B) showing strong 
generalizability and effective risk identification for IMH 
in ICI patients. Similarly, the calibration curves (Figures 
3A and 3B) revealed that all the points were close to the 

Figure 2. (A) Nomogram model for predicting IMH risk in ICI patients; (B) The ROC curve for the nomogram model.

Table 3. Logistic regression analysis of the risk factors for IMH in the training cohort

Variable

Age (years)
Sex
     Female
     Male
KPS
Hepatic metastases
     No
     Yes
TNM
     III
     IV
BMI
     18.5-23.9
     24-27.9
     ≥ 28
     < 18.5
WBC (109/L)
PLT (109/L)
LYM (109/L)
ALT (U/L)*
AST (U/L)*
ALB (g/L)
GLB (g/L)
TBIL (μmol/L)*
AKP (U/L)*
ADA (U/L)
CRP (mg/L)*
β2-MG (mg/L)

OR (Univariable)

0.96 (0.94-0.97, p < 0.001)

1.23 (0.82-1.83, p = 0.314)
1.02 (0.99-1.04, p = 0.110)

2.41 (1.61-3.60, p < 0.001)

1.58 (1.08-2.31, p = 0.018)

1.04 (0.71-1.51, p = 0.844)
1.42 (0.75-2.70, p = 0.284)
0.87 (0.46-1.63, p = 0.662)
1.04 (1.01-1.08, p = 0.007)
1.00 (0.99-1.00, p = 0.066)
1.63 (1.24-2.15, p < 0.001)
1.01 (1.01-1.01, p < 0.001)
1.01 (1.01-1.01, p < 0.001)
1.03 (1.02-1.05, p < 0.001)
1.00 (0.99-1.00, p < 0.001)
1.03 (1.00-1.06, p = 0.029)
1.07 (1.04-1.09, p < 0.001)
1.11 (1.08-1.14, p < 0.001)
1.00 (0.99-1.01, p = 0.110)
1.13 (1.02-1.26, p = 0.023)

OR (Stepwise - multivariable)

0.96 (0.95-0.98, p < 0.001)

1.63 (1.02-2.60, p = 0.040)

1.61 (1.05-2.46, p = 0.030)

1.05 (1.01-1.09, p = 0.008)

1.50 (1.06-2.11, p = 0.021)
1.01 (1.01-1.01, p < 0.001)

1.02 (1.01-1.03, p = 0.006)

1.03 (1.01-1.07, p = 0.041)
1.04 (1.01-1.06, p = 0.012)
1.07 (1.04-1.10, p < 0.001)
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diagonal line. The Hosmer-Lemeshow test showed that 
the p values were 0.270 and 0.857 for the training set and 
the validation set, respectively, indicating that the model 
fit well. These findings indicate that the nomogram 
model accurately predicts IMH risk in both the training 
and validation cohorts and performs excellently.
	 To evaluate the clinical benefit of the model, DCA 
was used, and the results are shown in Figures 4A and 

4B. In the training cohort, the model indicated greater 
net benefit than the "all" and "none" lines at threshold 
probabilities between 1% and 39%, indicating clinical 
value. Similarly, the model indicated clinical applicability 
in the validation cohort at threshold probabilities between 
1% and 35%. CIC (Figure 4C and 4D) revealed that the 
nomogram model can be used to indicate clinical benefits 
for any ICI patients.

Figure 4. The DCA curves for the nomogram model. (A) training cohort; (B) validation cohort and CIC curves for the nomogram model; (C) 
training cohort; (D) validation cohort.

Figure 3. The calibration curves for the nomogram model. (A) training cohort; (B) validation cohort.
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4. Discussion

Understanding the risk factors for developing IMH and 
constructing a model to predict the risk of IMH are 
crucial to guiding treatment interventions and improving 
patient outcomes. In this study, liver function data, 
demographic data, and relevant hematological indices 
of cancer patients treated with ICIs were integrated to 
investigate the risk factors for IMH. Based on these 
findings, a new risk prediction model was constructed 
using a nomogram to identify the risk of IMH in 
these patients. The nomogram model can quickly and 
accurately identify the risk levels of IMH without the 
need for invasive procedures such as liver biopsies. It 
is readable and practical, making it more suitable for 
clinical practice. This model can assist in personalized 
medical treatment and optimize the safety of ICIs in 
clinical practice.
	 Nomogram models play crucial roles in predicting 
the risk of liver-related diseases. They have been used to 
develop risk prediction tools for various liver diseases. 
For example, a nomogram model was constructed for 
hepatocellular carcinoma (HCC) patients treated with 
ICIs on the basis of clinical characteristics and the 
serum alpha-fetoprotein response to predict patient 
mortality risk (17). Similarly, nomogram models have 
been developed for patients with autoimmune hepatitis 
(AIH) to identify predictors of poor treatment response 
and advanced liver fibrosis and even to predict the risk 
of AIH without requiring a liver biopsy (18). However, 
no studies have proposed the use of a nomogram model 
to predict the risk of IMH. The current study is the first 
to utilize real-world data from hospitals to construct 
a nomogram model to predict the risk of IMH in 
patients receiving ICI treatment. Several studies have 
shown that nomogram models have greater predictive 
accuracy than other hepatitis risk assessment tools 
do. For example, Zhao et al. developed a nomogram 
model to predict acute liver failure (ALF) in patients 
with spontaneous rupture of hepatocellular carcinoma 
(SRHCC) with a high level of accuracy, achieving 
a C-index of 0.91 that was superior to those of the 
Child‒Pugh and ALBI models (19). Similarly, Yang et 
al. constructed a nomogram model to predict 90-day 
mortality risk in patients with hepatitis B virus-related 
acute‒chronic liver failure (HBV-ACLF) (20). This 
model outperformed the MELD score, Age-Bilirubin-
International Normalized Ratio-Creatinine (ABIC) 
score, and Albumin-Bilirubin (ALBI) score in terms of 
prediction accuracy.
	 In the current study, patients with liver metastasis 
had a significantly increased risk of IMH, with a 1.52-
fold greater risk than those without liver metastasis. 
However, the relationship between IMH and liver 
metastasis is complex. A retrospective case‒control 
study by Storm et al. revealed that while liver metastasis 
was initially associated with an increased likelihood of 

IMH, this association was not significant after adjusting 
for covariates (21). Similarly, a systematic review and 
meta-analysis by Pan et al. reported that the association 
between liver metastasis and IMH was not statistically 
significant (OR: 1.47, 95% CI: 0.99-2.18; p = 0.056) (11). 
Therefore, the hypothesis is that liver metastasis may 
play a role in the occurrence of IMH. However, other 
factors, such as liver function and cancer staging, appear 
to have a greater impact on the risk of IMH in patients 
receiving ICI treatment. Patients with TNM stage IV 
disease have more severe cancer progression and often 
receive more intensive and frequent ICI treatment (22). 
This increases their risk of developing IMH compared 
to patients in other stages. Older patients tend to have 
reduced bodily activity and liver function compared to 
younger patients (23,24), which manifests as a lower 
risk of IMH in older patients in this study. Consequently, 
age emerged as a protective factor against IMH in the 
univariate and multivariate analyses.
	 The mechanism of IMH involves T-cell overactivation 
(25). Thus, WBCs play a crucial role in the development 
of IMH. Studies have shown that a small number of 
intrahepatic virus-specific cytotoxic T lymphocytes 
(CTLs) and recruited monocytes/macrophages can lead 
to chronic liver inflammation, increasing the risk of IMH 
(26). Additionally, T-cell-mediated immune mechanisms 
are related to hepatitis B virus (HBV) infection, and 
immunosuppressants can impair T-cell function, leading 
to immune-mediated hepatocyte lysis and reduced 
viral clearance, further increasing the risk of IMH (27). 
That said, Johnson et al. examined a mouse model 
of T-cell-mediated hepatitis induced by lymphocytic 
choriomeningitis virus (LCMV) infection and they 
reported that the severity of hepatitis was associated with 
the activity of cytotoxic T cells in the liver and spleen 
(28). These findings emphasize the role of T cells in liver 
injury and indicate that WBC dysfunction can exacerbate 
immune-mediated liver damage, increasing the risk of 
IMH.
	 Extensive research has shown that lymphocytes 
play a crucial role in IMH by mediating liver injury 
and disease progression (29). Platelets coordinate liver 
inflammation and damage through signaling factors such 
as TPL2 in iNKT cells, influencing immune-driven liver 
diseases and thereby increasing the risk of IMH (30). 
This finding is similar to the current study's findings. 
AST and TBIL are common markers of liver function 
and injury, and their elevation is a key feature of IMH, 
typically manifesting as elevated transaminases and 
other liver function abnormalities (21). Abnormal liver 
function often increases the risk of IMH.
	 Additionally, Zhang et al. reported that IMH is often 
accompanied by increased AST and TBIL levels (31). 
Owing to the unique immunological characteristics of 
the liver, the occurrence of IMH is often accompanied by 
elevated levels of ALB and GLB (32). In a study on the 
impact of ICIs on liver enzymes and attenuation, Park 
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et al. reported that patients treated with ICIs had higher 
ALB levels than those at the baseline did, indirectly 
indicating that IMH is accompanied by elevated ALB 
levels (33). ADA levels in body fluids reflect the activity 
of cellular immune responses. When IMH occurs, the 
liver's cellular immune response intensifies, leading to 
increased ADA levels (34). In the current study, this was 
evident in an increase in ADA levels of one unit, which 
increased the risk of IMH by 2%.
	 The current study had several innovative aspects. 
First, stringent inclusion and exclusion criteria 
were applied to exclude all unsuitable patients, and 
comprehensive characteristic data were thoroughly 
collected from patients in all age groups, ensuring the 
validity of data. Second, the direction and extent of 
the impact of each predictor on the occurrence of VTE 
in patients was investigated in the nomogram model, 
providing theoretical guidance for preventing VTE in 
clinical practice.
	 That said, this study had several limitations. First, this 
was a single-center study, with all patient data collected 
from one hospital. Therefore, the generalizability of 
the nomogram model is debatable. Future studies 
could involve multicenter collaboration to validate 
the model's performance using patient data from other 
centers. Second, this study was retrospective, so it has 
inherent limitations such as recall bias and recording 
bias. Finally, the impact of patients' imaging data or liver 
biopsy results on the risk of IMH occurrence was not 
considered, and these factors were not included in the 
model as predictors. Future research could incorporate 
detailed patient characteristics, such as imaging and liver 
biopsy data. This would increase the initial cost of the 
study, but it would undoubtedly enhance the model's 
performance and quality.
	 In conclusion, a model was developed to estimate the 
risk of IMH in cancer patients receiving ICI treatment. 
Based on the nomogram algorithm, this model is intuitive 
and straightforward, making it well-suited for assessment 
of the risk of patients developing IMH after ICI therapy 
in clinical practice. This nomogram model enables 
the prompt formulation of preventive and therapeutic 
strategies, ultimately reducing the likelihood of IRAEs, 
and particularly IMH. The practical use of this model in 
clinical settings could potentially enhance the quality of 
life of cancer patients.
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1. Introduction

Hepatocellular carcinoma (HCC) remains a formidable 
global health challenge, ranking as the 6th most common 
cancer and the 3rd leading cause of cancer-related 
mortality worldwide (1,2). Despite advancements 
in treatment modalities, hepatectomy persists as the 

primary curative option for a significant proportion 
of HCC patients. However, postoperative recurrence 
poses a substantial obstacle to long-term survival, with 
up to 70% of patients experiencing recurrence within 
5 years (3-8). This high recurrence rate underscores 
critical need for a comprehensive understanding of 
recurrence patterns and associated risk factors to guide 
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SUMMARY: Distant metastasis after hepatectomy for hepatocellular carcinoma (HCC) significantly impairs long-
term outcome. This study aimed to identify patterns, risk factors, and develop a prediction model for distant metastasis 
at first recurrence following HCC resection. This multi-center retrospective study included patients undergoing 
curative hepatectomy for HCC. Risk factors for distant metastasis were identified using Cox regression. A nomogram 
was constructed and validated using the concordance index (C-index) and calibration curves. Among 2,705 patients, 
1,507 experienced recurrence, with 342 (22.7 per cent) developing distant metastasis. Common metastatic sites 
included extrahepatic vessels (36.2 per cent), lungs (26.0 per cent), and lymph nodes (20.8 per cent). Patients with 
distant metastasis had significantly worse 5-year overall survival compared to those with intrahepatic recurrence (9.1 
versus 41.1 per cent, p < 0.001). Independent risk factors included preoperative tumor rupture, tumor size over 5.0 cm, 
multiple tumors, satellite nodules, macro- and microvascular invasion, narrow resection margin, and intraoperative 
blood transfusion. The nomogram demonstrated excellent discrimination (C-index > 0.85) and accurately stratified 
patients into three risk categories. In conclusion, distant metastasis at first recurrence following HCC resection was 
associated with poor prognosis. The proposed nomogram facilitates accurate prediction of distant metastasis, potentially 
informing personalized postoperative monitoring and interventions for high-risk patients.

Keywords: hepatocellular carcinoma, hepatectomy, distant metastasis, survival, recurrence
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postoperative surveillance and adjuvant treatment 
strategies (9,10).
	 Recurrence patterns in HCC can be broadly 
categorized as intrahepatic or extrahepatic (distant 
metastasis) (11,12). While intrahepatic recurrence is more 
common and often attributed to residual microscopic 
lesions or de novo tumors, distant metastasis represents 
a particularly aggressive form of disease progression 
(13,14). Distant metastasis not only signifies a more 
malignant tumor phenotype but also portends a markedly 
adverse prognosis, especially when occurring at the 
initial diagnosis of recurrence (15). Patients with distant 
metastasis face limited effective therapeutic options 
compared to those with isolated intrahepatic recurrence, 
who may benefit from curative treatments such as repeat 
hepatectomy or local ablation (11). Recent studies have 
identified various risk factors for HCC recurrence, 
including tumor-related factors (e.g., tumor size, tumor 
number, microsatellite nodules, vascular invasion) and 
treatment-related factors (e.g., narrow surgical margin, 
intraoperative blood transfusion) (4,6,7,15-22). However, 
the comprehensive landscape of risk factors specifically 
for distant metastasis at first recurrence remains sparsely 
documented. Moreover, existing prediction models 
for HCC recurrence often lack specificity for distant 
metastasis and have not been widely validated across 
diverse patient populations (23-26).
	 Recent advancements in understanding distant 
metastasis have led to potential long-term survival 
benefits through re-resection for oligometastases or 
systemic treatments for unresectable multiple metastases 
(27,28). However, standardized protocols and optimized 
treatment strategies for managing distant metastasis at 
first recurrence after HCC resection are still lacking, 
necessitating further in-depth exploration. Given the 
significant impact of distant metastasis on patient 
outcomes and potential for targeted interventions in high-
risk individuals, there is an urgent need for accurate risk 
stratification tools. Early identification of patients at 
elevated risk for distant metastasis could inform more 
intensive surveillance protocols and guide application 
of adjuvant therapies, potentially improving long-term 
outcomes (29,30).
	 As such, this large-scale, multi-institutional study 
aimed at elucidating patterns and risk factors of distant 
metastasis at first recurrence following curative-intent 
hepatic resection for HCC. Furthermore, this study 
sought to develop and validate a predictive nomogram 
to stratify patients according to their risk of distant 
metastasis. This tool could potentially enable clinicians to 
tailor postoperative management strategies and optimize 
allocation of healthcare resources during postoperative 
follow-up for HCC patients.

2. Patients and Methods

2.1. Study design and patient population

This retrospective cohort study encompassed patients 
who underwent curative-intent hepatic resection for 
initially diagnosed HCC from January 2013 to December 
2020 at 11 tertiary hospitals across China (Eastern 
Hepatobiliary Surgery Hospital, Fourth Hospital of 
Harbin, Liuyang People's Hospital, First Hospital of 
Jilin University, Mengchao Hepatobiliary Hospital, Pu'er 
People's Hospital, Shandong Provincial Qianfoshan 
Hospital, Fuyang People's Hospital, Ziyang First 
People's Hospital, First Affiliated Hospital of Harbin 
Medical University, and Affiliated Hospital of Nantong 
University). Each participating center contributed more 
than 100 cases (ranging from 118 to 1,053 cases). The 
study protocol adhered to the ethical guidelines of the 
1975 Declaration of Helsinki (as revised in Brazil 2013) 
and was approved by the Institutional Review Boards of 
all participating centers. Informed consent for data use 
in clinical research was obtained from all patients at the 
time of surgery. Inclusion criteria were: i) age ≥ 18 years, 
ii) histologically confirmed HCC, iii) no prior anti-tumor 
treatments, and iv) curative hepatectomy (R0 resection) 
performed. Exclusion criteria included: i) palliative 
hepatectomy (R1 or R2 resection), ii) early death within 
90 days after surgery or loss to follow-up at 6 months 
after surgery, and iii) missing critical prognostic data.

2.2. Data collection

Detailed baseline information on clinicopathological 
characteristics and operative variables was obtained from 
prospectively maintained databases at each institution. 
Patient-related factors included age, sex, etiology of 
liver disease, Child-Pugh grade, preoperative serum 
alpha-fetoprotein (AFP) level, and presence of cirrhosis 
or portal hypertension. Tumor and surgery-related 
variables consisted of largest tumor size, tumor number, 
vascular invasion status (microscopic or macroscopic), 
satellite nodules, tumor differentiation, preoperative 
tumor rupture, width of resection margin, intraoperative 
blood loss and transfusion, surgical approach (open or 
laparoscopic), type (anatomical or non-anatomical) and 
extent (minor or major) of hepatectomy. Preoperative 
tumor rupture was documented based on clinical 
presentations and imaging findings. For patients with 
controlled rupture and no evidence of peritoneal seeding 
on intraoperative exploration, surgical resection was 
considered feasible since rupture typically occurs 
on tumor surface rather than affecting intrahepatic 
boundaries. Cirrhosis was confirmed by postoperative 
histopathological findings. Portal hypertension was 
determined based on endoscopic evidence of esophageal 
varices or splenomegaly with platelet count less than 100 
× 109/L. Major hepatectomy was defined as removal of ≥ 
3 Couinaud liver segments (31). Anatomical hepatectomy 
was characterized as complete anatomical removal of 
hepatic segments based on Couinaud's classification 
according to the Brisbane 2000 system (31).
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factors associated with distant metastasis. Variables with 
a p-value < 0.10 in univariate analysis were included 
in the multivariate model. Results were presented as 
hazard ratios (HR) with 95% confidence intervals 
(CI). A nomogram for predicting distant metastasis 
was constructed based on the independent risk factors 
identified in the multivariate analysis. The model's 
discriminative capability was assessed using Harrell's 
concordance index (C-index) and the area under 
the receiver operating characteristic curve (AUC). 
Calibration was evaluated using calibration curves. The 
nomogram was subjected to internal validation using 
bootstrap resampling (1,000 resamples). Based on the 
nomogram scores, patients were stratified into low-, 
intermediate-, and high-risk groups using cut-off values 
setting at the 50th and 85th percentiles. Kaplan-Meier 
curves were used to compare distant metastasis-free 
survival among the risk groups. All statistical analyses 
were performed using R software version 4.0.3 (R 
Foundation for Statistical Computing, Vienna, Austria) 
and SPSS version 26.0 (IBM Corp., Armonk, NY, USA). 
A two-tailed p-value < 0.05 was considered statistically 
significant.

3. Results

3.1. Patient characteristics and recurrence patterns

Of 2,902 HCC patients who underwent curative-
intent hepatectomy, 2,705 met the inclusion criteria 
and constituted the final analytic cohort (Supplemental 
Figure S1, https://www.biosciencetrends.com/action/
getSupplementalData.php?ID=246). At a median 
follow-up of 62.0 months, 1,507 patients (55.7%) 
experienced postoperative recurrence. Among these, 
342 patients (22.7% of overall recurrences, 12.6% of the 
entire cohort) presented with distant metastasis at first 
recurrence.
	 Comparisons of clinicopathological characteristics 
among patients with intrahepatic recurrence only, distant 
metastasis at first recurrence, and patients without 
recurrence are summarized in Table 1. Compared to 
patients without recurrence or with only intrahepatic 
recurrence, those with distant metastasis were 
significantly younger, had higher rates of preoperative 
tumor rupture, larger tumor size, multiple tumors, 
satellite nodules, poor tumor differentiation, and 
increased likelihood of microvascular and macrovascular 
invasion (all p < 0.001). Additionally, patients with 
distant metastasis more frequently underwent major 
hepatectomy, had narrow surgical margin (< 1.0 cm), 
experienced massive intraoperative blood loss, and 
received intraoperative blood transfusion.

3.2. Patterns of distant metastasis

Table 2 details the clinical characteristics of patients with 

2.3. Follow-up and study endpoints

After hepatectomy, a relatively uniform and standardized 
surveillance strategy for recurrence was implemented 
across all participating centers. This protocol involved 
regular monitoring of serum AFP level, abdominal 
ultrasonography, and contrast-enhanced computed 
tomography (CT) or magnetic resonance imaging (MRI) 
every 2-3 months for the first two years, then every 3-6 
months thereafter.
	 The diagnosis of HCC recurrence primarily relied 
on the identification of new lesions showing consistent 
radiological manifestations with the primary tumors, 
with or without a continuous increase of serum AFP 
level. Generally, intrahepatic recurrence was confirmed 
by abdominal CT or MRI scan, while suspicion of 
extrahepatic recurrence was confirmed by performing 
additional examinations, including brain and chest CT, 
bone scintigraphy, or positron emission tomography 
when necessary. A variety of treatment modalities 
ranging from curative to palliative approaches were 
implemented upon the confirmation of HCC recurrence, 
taking into consideration the type, location, and extent 
of the recurrent disease. Specifically, patients with only 
intrahepatic recurrence may undergo curative treatment 
options such as repeat hepatectomy, local ablation, or 
liver transplantation, as well as non-curative treatments 
including transarterial chemoembolization, systemic 
therapy, or best supportive care.
	 The primary outcome was the occurrence of distant 
metastasis at first recurrence following hepatectomy, 
which was defined as a recurrence site outside the 
liver, with or without concomitant intrahepatic lesions. 
Secondary outcomes included overall survival (OS), 
calculated from initial hepatectomy to the date of death 
or last follow-up, and post-recurrence survival (PRS), 
measured from the diagnosis of first recurrence to 
death or last follow-up. Early recurrence was defined 
as occurring within 12 months post-hepatectomy, while 
late recurrence occurred beyond 12 months. Detailed 
information regarding the patterns of recurrence, 
treatment modality, and post-recurrence follow-up data is 
documented.

2.4. Statistical analysis

Continuous variables were expressed as mean ± standard 
deviation or median (interquartile range), and categorical 
variables as frequencies (n) or percentages (%). 
Comparisons between groups were performed using the 
Student's t-test or Mann-Whitney U test for continuous 
variables and the χ2 or Fisher's exact test for categorical 
variables.
	 Survival outcomes were estimated using the Kaplan-
Meier method and compared using the log-rank test. 
Univariate and multivariate Cox proportional hazards 
regression analyses were conducted to identify risk 
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distant metastasis at first recurrence. The most common 
sites were extrahepatic gross vessels (n = 124, 36.2%), 
lungs (n = 89, 26.0%), lymph nodes (n = 71, 20.8%), 
peritoneal seeding (n = 48, 14.0%), adrenal glands (n 
= 26, 7.6%), bones (n = 10, 2.9%), and brain (n = 4, 
1.2%). Notably, 230 patients (67.3%) experienced distant 
metastasis within the first year after surgery, and 255 
(74.6%) had multiple metastatic lesions.

3.3. Survival outcomes

As shown in Table 3 and Figure 1, patients with distant 
metastasis had significantly poorer survival outcomes. 
The 5-year OS rates were 9.1%, 41.1%, and 90.8% 
for patients with distant metastasis, only intrahepatic 
recurrence, and no recurrence, respectively (p < 0.001). 
The median PRS for patients with distant metastasis 
was significantly shorter than for those with only 
intrahepatic recurrence (7.0 vs. 24.6 months, p < 0.001). 
With regard to the treatment modalities, the proportion 
of patients undergoing potentially curative treatment for 
recurrent lesions among patients with distant metastasis 
was significantly lower than among patients with only 
intrahepatic recurrence (14.0% vs. 47.1%, p < 0.001).

3.4. Risk factors of distant metastasis

Supplemental Table S1 (https://www.biosciencetrends.
com/action/getSupplementalData.php?ID=246) 
and Table 4 summarize the independent risk factors 
associated with overall recurrence and distant metastasis 
at first recurrence after surgery, as identified through 
univariate and multivariate Cox-regression analyses. 
Several variables, including preoperative AFP level 
> 400 ng/mL, preoperative tumor rupture, largest 
tumor size > 5.0 cm, multiple tumors, microvascular 
and macrovascular invasion, satellite nodules, narrow 
surgical margin, and intraoperative blood transfusion, 
were identified as independent risk factors of distant 
metastasis at the first recurrence after HCC resection.
	 Further analysis of predictors for worse PRS was 
conducted among patients who experienced distant 
metastasis at first recurrence. As noted in Table 5, 
independent risk factors associated with PRS included 
short time interval to recurrence (within 1 year after 
hepatectomy), concurrent intrahepatic recurrence, and 

Table 3. Comparison of recurrent patterns, treatment modalities and post-recurrence survival between patients with 
intrahepatic recurrence only and patients with distant metastasis at first recurrenc

n (%)

Male sex
Age at first recurrence, years*
Child-Pugh grade B/C at the diagnosis of recurrence
Interval to recurrence
     Early recurrence (within 1 year after surgery)
     Late recurrence (beyond 1 year after surgery)
Treatment modality for the recurrent tumor
     Potentially curative treatments
     Non-curative treatments
Deaths during the follow-up
Median OS (95% CI), months
     1-year OS rate, %
     3-year OS rate, %
     5-year OS rate, %
Median PRS (95% CI), months
     1-year PRS rate, %
     3-year PRS rate, %
     5-year PRS rate, %

*Values are mean ± standard deviation; CI, confidence interval; OS, overall survival; PRS, post-recurrence survival.

Overall Recurrence
(n = 1,507)

1,331 (88.3)
  54 ± 12

181/1,334 (13.6)

   791 (52.5)
   716 (47.5)

   597 (39.6)
   910 (60.4)
1,118 (74.2)

37.8 (34.5, 41.0)
81.2
51.1
33.8

18.2 (16.6, 19.9)
62.0
32.4
19.7

p

   0.867
< 0.001
< 0.001

< 0.001

< 0.001

< 0.001
< 0.001

< 0.001

Only Intrahepatic Recurrence
(n = 1,165)

1,030 (88.4)
55 ± 12

133/1,032 (12.9)

   561 (48.2)
   604 (51.8)

   549 (47.1)
   616 (62.9)
   792 (68.0)

49.6 (45.9, 53.2)
86.6
59.8
41.1

24.6 (22.3, 26.9)
70.9
39.7
25.1

Distant Metastasis
(n = 342)

301 (88.0)
51 ± 12

48/302 (15.9)

230 (67.3)
112 (32.7)

  48 (14.0)
294 (86.0)
326 (95.3)

17.6 (15.4, 19.7)
62.9
21.6
  9.1

7.0 (6.1, 7.9)
32.5
8.4
2.7

Table 2. Clinical characteristics of patients with distant 
metastasis at first recurrence after hepatectomy for 
hepatocellular carcinoma

n (%)

Male sex
Age at the diagnosis of distant metastasis, years*
Child-Pugh grade at the diagnosis of distant 
metastasis (n = 302)
     A
     B/C
Interval to first recurrence, months*
     Early recurrence (within 1 year after surgery)
     Late recurrence (beyond 1 year after surgery)
Lesion numbers of distant metastasis
     Single metastatic lesion
     Multiple metastatic lesions
Metastatic site of distant metastasis
     Extrahepatic gross vascular metastasis
     Lung metastasis
     Lymph node metastasis
     Peritoneal seeding metastasis
     Adrenal metastasis
     Bone metastasis
     Brain metastasis

*Values are mean ± standard deviation.

Distant Metastasis
(n = 342)

301 (88.0)
51 ± 11

254 (84.1)
  48 (15.9)

230 (67.3)
112 (32.7)

  87 (25.4)
255 (74.6)

124 (36.2)
  89 (26.0)
  71 (20.8)
  48 (14.0)
26 (7.6)
10 (2.9)
  4 (1.2)

https://www.biosciencetrends.com/action/getSupplementalData.php?ID=246
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receiving non-curative treatment modalities for recurrent 
tumors. Furthermore, survival curves also demonstrated 
that patients who experienced early recurrence or had 

concurrent intrahepatic recurrence had worse PRS 
rates in comparison to those who experienced late 
recurrence (beyond 1 year after surgery) or did not 
have concurrent intrahepatic recurrence (Supplemental 
Figure S2-S3, https://www.biosciencetrends.com/action/
getSupplementalData.php?ID=246).

3.5. Prediction model for distant metastasis

Based on the independent risk factors of distant 
metastasis, a novel nomogram for predicting 1-year and 
3-year distant metastasis at first recurrence following 
HCC resection has been constructed (Figure 2A). Each 
predictive variable in the nomogram was assigned a 
weighted score, which was determined by its regression 
coefficient in the multivariable analysis (Supplemental 
Table S2, https://www.biosciencetrends.com/action/
getSupplementalData.php?ID=246). These scores were 
then summed for each patient, representing their total 
scores and corresponding to the predicted probabilities of 
developing distant metastasis. The nomograms exhibited 
excellent discriminatory and calibration abilities across 
the entire cohort, with C-indices of 0.875, 0.865, 
and 0.871 for predicting distant metastasis at 1-year, 
2-year, and 3-year intervals, respectively (Figure 2B). 
The calibration curves further demonstrated a robust 
alignment between the predicted probabilities and the 
observed occurrences of distant metastasis (Figure 2, 
C-D).

3.6. Risk stratification of distant metastasis

Based on the nomogram scores, patients were stratified 

Table 4. Univariate and multivariate Cox-regression analyses predicting distant metastasis at first recurrence after 
hepatectomy for hepatocellular carcinoma

Variables

Age
Sex
ASA score
HBV (+)
HCV (+)
Cirrhosis
Portal hypertension
Preoperative Child-Pugh grade
Preoperative AFP level > 400 ng/mL
Preoperative tumor rupture
Largest tumor size
Multiple tumors
Macrovascular invasion
Microvascular invasion
Satellite nodules
Poor tumor differentiation
Surgical approach
Narrow resection margin
Major hepatectomy
Intraoperative blood loss > 600 mL
Intraoperative blood transfusion

AFP, alpha-fetoprotein; ASA, American Society of Anesthesiologists; CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; HR, 
hazard ratio; MV, multivariate; NS, not significant; UV, univariate.

HR comparison

           > 65 vs. ≤ 65 years
     Male vs. female

  > 2 vs. ≤ 2
Yes vs. no
Yes vs. no
Yes vs. no
Yes vs. no
  B vs. A

Yes vs. no
Yes vs. no

       > 5.0 vs. ≤ 5.0 cm
Yes vs. no
Yes vs. no
Yes vs. no
Yes vs. no
Yes vs. no

             Open vs. laparoscopic
Yes vs. no
Yes vs. no
Yes vs. no
Yes vs. no

MV p

   0.383

< 0.001
< 0.001
< 0.001
   0.042
< 0.001
< 0.001
   0.001
   0.792

< 0.001
   0.563
   0.534
   0.002

UV HR (95% CI)

0.622 (0.441-0.879)
0.936 (0.676-1.298)
0.871 (0.688-1.096)
1.093 (0.808-1.480)
0.881 (0.437-1.776)
0.900 (0.717-1.130)
1.017 (0.790-1.309)
1.293 (0.894-1.872)
2.766 (2.213-3.456)
5.133 (3.687-7.145)
4.946 (3.830-6.389)
3.255 (2.603-4.071)

  9.703 (7.640-12.323)
4.420 (3.488-5.601)
4.615 (3.707-5.746)
2.114 (1.469-3.044)
1.170 (0.882-1.486)
1.761 (1.414-2.193)
3.816 (3.078-4.730)
3.159 (2.528-3.947)
3.670 (2.925-4.604)

UV p

   0.007
   0.692
   0.164
   0.564
   0.723
   0.364
   0.896
   0.172
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.451
< 0.001
< 0.001
< 0.001
< 0.001

MV HR (95% CI)

NS

1.687 (1.344-2.117)
2.558 (1.808-3.617)
2.430 (1.845-3.202)
1.388 (1.013-1.902)
3.442 (2.639-4.489)
2.079 (1.597-2.706)
1.716 (1.246-2.364)

NS

1.653 (1.325-2.063)
NS
NS

1.486 (1.157-1.910)

Figure 1. Kaplan-Meier survival curves comparing (A) overall 
survival and (B) post-recurrence survival among patients with no 
recurrence, only intrahepatic recurrence, and distant metastasis at 
first recurrence after hepatectomy for hepatocellular carcinoma.
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into low, intermediate, and high-risk groups, with cut-
off values setting at the 50th and 85th percentiles. The 
high-risk group had a 2.98-fold higher probability of 
developing distant metastasis compared to the low-risk 
group (HR: 2.981, 95% CI: 2.639-3.268, p < 0.001), 
while the intermediate-risk group had a 1.54-fold higher 
probability (HR: 1.544, 95% CI: 1.253-1.845, p < 0.001) 
(Supplemental Table S3, https://www.biosciencetrends.
com/action/getSupplementalData.php?ID=246). Kaplan-
Meier survival curves for the low, intermediate, and 

high-risk groups stratified by the nomograms for distant 
metastasis are depicted in Figure 3. The cumulative rate 
of distant metastasis at first recurrence after hepatectomy 
for HCC is significantly higher in the high-risk group 
compared to the low-risk and moderate-risk groups (p < 
0.001).

4. Discussion

This large-scale, multi-institutional study comprehensively 

Table 5. Univariate and multivariate Cox-regression analyses predicting post-recurrence survival among patients who 
developed distant metastasis at first recurrence after hepatectomy for hepatocellular carcinoma

Variables

Sex
Age at first recurrence
HBV (+)
Cirrhosis at first recurrence
Portal hypertension at first recurrence
Child-Pugh grade at first recurrence
Interval to recurrence
Largest recurrent tumor size
Multiple metastatic lesions
Metastatic site
Concurrent intrahepatic recurrence
Treatment modality for recurrent tumor

AFP, alpha-fetoprotein; ASA, American Society of Anesthesiologists; CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; HR, 
hazard ratio; MV, multivariate; NS, not significant; UV, univariate.

HR comparison

     Male vs. female
      > 65 vs. ≤ 65 years
        Yes vs. no
        Yes vs. no
        Yes vs. no
       B/C vs. A
         <1 vs. ≥ 1 year
     > 5.0 vs. ≤ 5.0 cm
        Yes vs. no
   Others vs. lung
        Yes vs. no
Curative vs. non-curative

MV p

   0.213
< 0.001
   0.356
   0.546

   0.011
< 0.001

UV HR (95% CI)

1.693 (0.839-3.414)
0.406 (0.673-2.940)
0.972 (0.561-1.685)
1.004 (0.631-1.596)
1.902 (0.753-4.805)
1.677 (1.015-2.771)
1.433 (0.935-2.196)
1.671 (0.947-2.948)
2.322 (0.918-5.872)
1.285 (0.831-1.986)
1.575 (1.175-2.111)
0.556 (0.279-0.782)

UV p

0.141
0.365
0.920
0.987
0.174
0.044
0.099
0.076
0.075
0.259
0.002
0.001

MV HR (95% CI)

NS
2.340 (1.477-3.706)

NS
NS

3.169 (1.303-7.706)
0.423 (0.268-0.669)

Figure 2. Nomogram for predicting distant metastasis at first recurrence after hepatectomy for hepatocellular carcinoma. (A) The nomogram 
incorporating independent risk factors. (B) Receiver operating characteristic curves for predicting 1-, 2-, and 3-year distant metastasis. (C) Calibration 
curve for 1-year distant metastasis prediction. (D) Calibration curve for 3-year distant metastasis prediction. The nomogram-predicted probability of 
distant metastasis is plotted on the X axis, and the actual distant metastasis is plotted on the Y axis. AUC, Area under the curve.

https://www.biosciencetrends.com/action/getSupplementalData.php?ID=246
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analyzed the patterns, risk factors, and outcomes of 
distant metastasis at first recurrence following curative 
hepatectomy for HCC. The findings of the present study 
reveal that distant metastasis occurs in a substantial 
proportion of patients with postoperative recurrence 
(22.7%) and is associated with dismal long-term 
outcomes. We have developed and internally validated 
a novel nomogram that accurately predicts the risk of 
distant metastasis, potentially enabling more personalized 
postoperative management strategies. Meanwhile, the 
observed patterns of distant metastasis in our cohort 
provide important insights into the biological behavior 
of recurrent HCC. The predominance of extrahepatic 
vascular and pulmonary metastases underscores the 
hematogenous spread as a key mechanism of distant 
dissemination. This finding is consistent with previous 
studies highlighting the role of circulating tumor cells in 
HCC metastasis (32-35) and suggests potential targets for 
future interventions aimed at preventing distant spread.
	 Our study identified several independent risk factors 
for distant metastasis, many of which reflect aggressive 
tumor biology. Among these factors, preoperative 
tumor rupture warrants particular attention. Through 
stringent inclusion criteria, we selected only patients 
whose preoperative rupture was promptly controlled 
and showed no evidence of peritoneal seeding upon 
intraoperative exploration. Since tumor rupture typically 
occurs on the diaphragmatic or visceral surface rather 
than affecting intrahepatic tumor boundaries, surgical 
resection with adequate margins was technically 
feasible following careful evaluation of tumor size and 
location, as confirmed by negative surgical margins on 
postoperative pathological examination. Notably, among 
the 100 patients with tumor rupture, 40% developed 
distant metastasis, a significantly higher rate compared 
to the non-rupture group, indicating that tumor rupture 

remains a crucial risk factor for distant dissemination 
even when R0 resection is achieved. Other risk factors, 
including vascular invasion, tumor size, and multiplicity, 
further emphasize the importance of early detection and 
timely intervention.
	 Our study on predicting post-hepatectomy distant 
metastasis demonstrates several distinctive features. 
First, unlike most existing models in previous studies 
that predict overall recurrence or survival (23-26), 
this work represents the first large-scale investigation 
specifically addressing distant metastasis, the recurrence 
pattern associated with the poorest prognosis. Then, we 
observed that 36.2% (124 cases) of distant metastases 
occurred in extrahepatic vessels, a critical pattern not 
well documented in current literature. More importantly, 
67.3% of distant metastases developed within the 
first postoperative year, identifying a crucial temporal 
window for clinical intervention. Lastly, our prediction 
model achieved superior discriminative ability, with 
C-indices exceeding 0.85, surpassing most existing 
models, thus enabling more precise risk stratification and 
individualized surveillance protocols.
	 Our findings have important clinical implications, 
particularly in the context of regional differences in 
HCC management. While there are notable variations 
in disease etiology and treatment paradigms between 
Eastern and Western countries, especially regarding 
surgical intervention for intermediate/advanced HCC, 
carefully selected patients with high-risk features can 
achieve survival benefits through hepatectomy. The 
proposed nomogram effectively stratifies these patients 
into distinct risk groups, enabling adaptation of post-
resection management strategies. Unlike intrahepatic 
recurrence where curative local treatments remain viable 
options, patients with distant metastasis primarily rely 
on systemic therapies. For those identified as high-
risk, our prediction model supports administration of 
intensified surveillance protocols, including earlier 
and more frequent imaging examinations to detect 
metastatic lesions at a treatable stage. This risk-stratified 
approach proves particularly valuable as it guides both 
personalized monitoring schedules and the timing of 
systemic therapy initiation, with high-risk patients being 
potential candidates for adjuvant treatment or enrollment 
in clinical trials evaluating novel therapeutic strategies 
(29,30).
	 Our study has several limitations. First, despite the 
multi-institutional nature of our cohort, all participating 
centers were in China, potentially limiting the 
generalizability of our findings to other populations 
with different HCC etiologies. Second, our model is 
based solely on clinicopathological factors and does not 
incorporate molecular markers, which could potentially 
enhance its predictive accuracy. Future studies 
integrating genomic and proteomic data may further 
refine risk stratification for distant metastasis in HCC. 
Third, as a real-world retrospective study, standardization 

Figure 3. Kaplan-Meier curves showing cumulative rate of distant 
metastasis for low-, intermediate-, and high-risk groups stratified 
by the nomogram.
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of adjuvant therapy was challenging due to multiple 
factors, including evolving evidence for adjuvant 
treatment efficacy and varying institutional protocols. 
Current clinical trials have yielded conflicting results 
regarding the effectiveness of postoperative adjuvant 
therapy in reducing HCC recurrence, underscoring the 
need for large-scale prospective studies to establish 
optimal adjuvant treatment strategies, particularly for 
patients identified as high-risk for distant metastasis.
	 In conclusion, this study provides a comprehensive 
analysis of distant metastasis patterns following HCC 
resection and presents a novel, internally validated 
nomogram for predicting this adverse outcome. The 
ability to accurately stratify patients according to their 
risk of distant metastasis may inform personalized 
postoperative surveillance strategies and guide early 
intervention in high-risk individuals. Future prospective 
studies are warranted to evaluate the clinical impact of 
risk-adapted management based on our prediction model 
and to explore targeted approaches for preventing distant 
metastasis in HCC.
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1. Introduction

Lung cancer accounts for approximately 21% of cancer 
deaths in the United States; however, the mortality has 
been declining with advances in targeted therapy, partly 
driven by improved overall survival time of stage-IV 
non-small cell lung cancer (NSCLC) (1). Meanwhile, 
certain adverse effects associated with these novel anti-
cancer agents, particularly dermatologic toxicity, have 
been significant and draw attention of care providers 

(2-4).
	 NSCLC accounts for 85% of lung cancer (5), 
predominantly consisting of adenocarcinoma and 
squamous cell carcinoma. Approximately 78% of Asian 
populations and 60% of Western populations of lung 
adenocarcinoma patients have driver gene mutations, 
including epidermal growth factor receptor (EGFR), 
anaplastic lymphoma kinase (ALK), c-ros oncogene 
1 (ROS1), Kirsten rat sarcoma virus (KRAS), V-raf 
murine sarcoma oncogene homolog B1 (BRAF), MET, 

DOI: 10.5582/bst.2024.01424Original Article

SUMMARY: Dermatologic toxicities associated with targeted therapies may impact drug intolerance and predict 
drug response, among which rash is most frequently reported and well delineated. However, the profile and effect of 
non-rash dermatologic toxicity are not fully understood. We identified stage-IV non-small cell lung cancer patients 
diagnosed at Mayo Clinic in 2006-2019 and systematically analyzed demographics, targeted agents, toxicity, 
response, and survival outcomes of patients who received targeted therapy. Five toxicity subgroups-none, only non-
rash dermatologic, concurrent non-rash and rash (concurrent) dermatologic, only rash, and others-were compared; 
multivariable survival analyses employed Cox Proportional Hazard models. This study included 533 patients who had 
taken targeted therapies: 36 (6.8%) had no toxicity, 26 (4.9%) only non-rash dermatologic, 193 (36.2%) only rash, 
134 (25.1%) concurrent dermatologic, 144 (27.0%) other toxicities. Non-rash dermatologic toxicities predominately 
included xerosis (12.8%), pruritus (8.5%), paronychia (7.0%). Rash was the most frequent (59.4%) and the earliest 
occurring (21 median onset days [MOD]) dermatologic toxicity; paronychia was the latest (69 MOD) occurring. In 329 
epidermal growth factor receptor inhibitors-treated patients with dermatologic toxicity, mild toxicity occurred the most 
frequently in patients with only non-rash (81.8%), then those with only rash (64.8%), and the least in the concurrent 
(50.4%, P=0.013). Patients with concurrent dermatologic toxicities had a significantly higher response rate (67.9%) 
than those with only non-rash (53.8%) or only rash (41.1%, p < 0.001). Multivariable analysis demonstrated concurrent 
dermatologic toxicity independently predicted a lower risk of death (harzard ratio [HR] 0.48 [0.30-0.77], p < 0.001). 
Compared to rash, non-rash dermatologic toxicity might be a stronger predictor of better treatment response and longer 
survival in patients who received targeted therapy.

Keywords: lung cancer, target therapy, dermatologic toxicity, non-rash, survival
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and human epidermal growth factor receptor (HER2), 
rearranged during transfection (RET) and other genetic 
alterations (6). Other targeted agents included anti-
vascular endothelial growth factor (VEGF) therapy, 
widely used for targeting tumor angiogenesis (7), and 
mammalian target of rapamycin (mTOR) inhibitors, 
which targets a cellular pathway driving oncogenesis 
and tumor progression (8) independent of specific gene 
mutations.
	 Dermatologic toxicity was mostly reported in EGFR 
inhibitors compared to other targeted drugs, typically 
presenting as papulopustular (acneiform) rash, xerosis, 
pruritus, paronychia, hair changes, and mucositis, and 
their incidences ranged from 47% to 100%, 10% to 49%, 
8% to 57%, 3% to 25%, 0 to 13%, and 0 to 44% (9), 
respectively. Even though most dermatologic toxicities 
are not life-threatening, their symptoms are unfavorably 
correlated with quality of life (10). One of the earlier 
clinical studies to explore the relationship between rash 
and clinical outcomes showed patients who developed 
cutaneous rash were associated with better response and 
prolonged survival in 57 NSCLC patients treated with 
erlotinib, a classic EGFR inhibitor (11). A similar result 
between rash and survival has been observed in a real-
world cohort of 79 patients with erlotinib (12). Higher 
severity of rash was also found to be a potential marker 
for the long-term efficacy of afatinib in 32 NSCLC 
patients (13). We also validated that dermatologic 
toxicity was a protective predictor for treatment response 
and survival (14). However, the specific relationship 
between non-rash dermatological and drug response, as 
well as survival length, is not documented, especially 
from real-world settings.
	 Our current study was designed to provide additional 
perspectives to fulfill the knowledge gap on the profile 
and predictive value of non-rash dermatologic toxicities 
in stage-IV lung cancer patients based on a 14-year 
prospectively enrolled and followed clinical cohort.

2. Patients and Methods

2.1. Study population and grouping

A total of 3,767 patients with newly diagnosed stage-
IV NSCLC were identified from January 1, 2006 to 
December 31, 2016 (15-17) in Mayo Clinic Lung Cancer 
Cohort and consecutive case series from January 1, 2017 
to December 31, 2019 (18). Patients were staged at the 
time of original diagnosis according to the 5th (19) or 7th 
(20) edition of TNM staging system. Inclusion criteria 
were i) patients were newly diagnosed stage-IV NSCLC 
from January 1, 2006 to December 31, 2019, ii) patients 
were treated with targeted therapy at Mayo Clinic, and 
(iii) patients signed content form. Exclusion criteria 
were i) patients had no documented toxicity information 
relevant to targeted therapy, ii) patients were lost to 
follow-up or terminated targeted therapy within one 

month from treatment initiation, and iii) patients were 
treated with concurrent chemoradiation and targeted 
therapy. Targeted agents targeted specific driver genes 
(e.g., EGFR, ALK/ROS1) and other antagonists targeting 
mTOR and VEGF/VEGFR.
	 The included patients were divided into five toxicity 
subgroups-none, only non-rash dermatologic, concurrent 
non-rash and rash (concurrent) dermatologic, only rash, 
and others based on the targeted therapy status. Patients 
without any targeted therapy-induced toxicity were 
grouped into none group; those who had dermatologic 
toxicity but not rash were put into only non-rash 
dermatologic group, and they could also have non-
dermatologic toxicity or not; those who had dermatologic 
toxicity with concurrent rash and other dermatologic 
toxicities that included but not limited to xerosis, 
pruritus, paronychia, erythema, mucositis, and nail 
changes were put into concurrent dermatologic group; 
those with only rash rather than other dermatologic 
toxicities were put into only rash group, and they could 
also have non-dermatologic toxicity or not; and those 
with only non-dermatologic toxicity were put into others 
group.

2.2. Data collection

The electronic medical records were reviewed, including 
detailed information on demographics, smoking history, 
lung cancer diagnosis, treatment, targeted therapy-
associated toxicity, treatment response, and vital status 
under the approval of the Mayo Foundation Institutional 
Review Board approval (IRB# 225-99).
	 Dermatologic toxicities were identified and 
categorized into rash and non-rash toxicities. Rash 
referred to acneiform, maculopapular, erythematous 
papular/pustular; non-rash dermatologic toxicity included 
xerosis, pruritus, paronychia, erythema, mucositis, 
nail changes, and other dermatological reactions that 
have been reported previously (21). The severity of 
dermatologic toxicities was evaluated by Common 
Terminology Criteria for Adverse Events (CTCAE) v5.0 
(22), were graded into mild (grade 1), moderate (grade 
2), severe (grade 3), life-threatening (grade 4) and death 
(grade 5). If the grade of toxicity based on CTCAE was 
not documented, descriptions related to severity were 
employed. Definitions of severity in medical records 
were identified by oncologists as follows: "tolerable 
or tolerated, sporadic, some, notable, occasional, 
manageable, faint (skin disorders)" were graded as mild; 
"intermittent, some continued, some modest, worsen" 
were categorized as moderate; "extremely, profound, 
generalized, faint (anemia, weak, fatigue), generalized, 
outstanding, persistent, quite a bit, really bad, significant, 
prominent, considerable, substantial, very" were 
considered as severe. The toxicity onset time was defined 
as the time from targeted drug initiation to toxicity 
occurrence.
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well as the subgroup analysis in three dermatologic 
toxicity groups (only non-rash, concurrent, only rash). 
A Logrank test assessed overall survival (OS), defined 
as the date of targeted drug initiation to the date of last 
follow-up or patient death with the endpoint on April 30, 
2022. A Cox proportional hazards model was developed 
for multivariable analysis to evaluate the toxicity status 
and known prognostic factors, including age, sex, race, 
smoking status, cell type, treatment modality, treatment 
line and treatment response. Hazard ratios (HR) with 
95% confidence intervals (CI) were calculated. Statistical 
analyses were performed using SAS, v.9.4 (SAS Institute 
Inc., Cary, NC, USA). Means (standard deviation, SD) 
and medians were reported for continuous data, and 
counts (n) and frequency (%) were used for categorical 
data. A two-sided p < 0.05 was statistically significant.

3. Results

In 3,767 stage-IV NSCLC patients, 1,856 (49.3%) 
received systemic therapy. Among the remaining 1,911 
(50.7%) patients who did not receive systemic therapy, 
185 had surgery and 625 had radiation. Excluding 1,224 
patients that were treated only with chemotherapy, 
immunotherapy, or concurrent chemoradiation. Six 
hundred and thirty-two (34.1%) of the 1856 patients 
were treated with targeted therapy. After excluding 
99 patients without information on toxicity, 533 were 
included in the analyses (Figure 1): dermatologic toxicity 
occurred in 353/533 (66.2%), including 26/533 (4.9%) 
only non-rash, 193 (36.2%) only rash, 134 (25.1%) 
concurrent, other toxicity in 144 (27.0%), and none in 36 

	 Treatment response was determined by the best 
response to targeted drugs, evaluated by Response 
Evaluation Criteria in Solid Tumors (RECIST) version 
1.1 (23), categorized by complete response (CR), partial 
response (PR), stable disease (SD), and progressive 
disease (PD). Objective response rate was the percentage 
of CR and PR (abbreviated as "response"). If original 
imaging tests and biopsy of the new suspected disease 
were not available, descriptions of response noted in 
medical records were utilized to define the best response. 
Definition of the descriptions for response were identified 
by oncologists based on the following criteria: "Totally 
resolved, complete remission, complete response, free of 
disease, negative bronchial margins, negative for tumor, 
no evidence of disease" were classified as CR; "Interval 
response, near complete response, good response, 
nice response, a remarkable response, nice regression, 
responded well, reduction, improvement of disease, and 
dramatic shrinkage" were categorized as PR; "Stable, 
stable disease, and good control" were considered as SD; 
"Disease progression, recurrent, progressive, recurrence, 
and new metastatic" were identified as PD.

2.3. Statistical methods

Age was analyzed by Kruskal-Wallis test; sex, race, 
smoking status, cell type, treatment modality, treatment 
line, treatment response, toxicity severity and gene status 
were evaluated by Chi-Square test to identify differences 
in five toxicity groups: none, only non-rash dermatologic, 
concurrent non-rash and rash (concurrent) dermatologic, 
only rash, and other (non-dermatologic toxicities), as 

Figure 1. The flow chart for the study population with patient inclusion and exclusion criteria.
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(6.8%). Of the 533 patients, the mean age (± SD) at lung 
cancer diagnosis was 62.4 (± 12.74) years, with 58.9% 
being female, 87.4% Whites, and 90.4% adenocarcinoma 
(Table 1). We observed that dermatologic toxicity 
was more frequent in EGFR+ than EGFR- patients 
(73.4% vs. 45.0%; p < 0.001). Among 353 patients with 
dermatologic reactions, 26/353 (7.4%) had only non-
rash, 193 (54.7%) only rash, 134 (38.0%) concurrent 
(Supplemental Table S1, https://www.biosciencetrends.
com/action/getSupplementalData.php?ID=245); 
concurrent dermatologic toxicity was more frequent in 
patients with EGFR+ than EGFR- tumors (44.0% vs. 
22.0%, p = 0.014), and in those who received targeted 
therapy as the first-line treatment than other lines (45% 
vs. 30.8%, p = 0.005). A total of 727 dermatological 
events were observed among 353 patients; the 
frequencies (n, %) from the highest to the lowest were 
rash (432, 59.4%), xerosis (93, 12.8%), pruritus (62, 
8.5%), paronychia (51, 7.0%), erythema (36, 5.0%), 
mucositis (12, 1.7%), nail changes (12, 1.7%) and others 
(30/727, 4.1%), predominately included dermatitis, skin 
pigmentation, and eyelash changes (Table 2A). When 
comparing the distribution of non-rash dermatologic 
toxicities, more patients had xerosis in the only non-
rash dermatologic group (14/26, 53.8%) than those in 
the concurrent dermatologic group (68/134, 50.7%); 
conversely, more patients had pruritus (58/134, 43.3%), 
paronychia (31, 23.1%) and mucositis (7, 5.2%) in the 
concurrent dermatologic group compared with those in 
only the non-rash dermatologic group (both pruritus and 
paronychia 1/26, 3.8%; mucositis 0; p = 0.003).
	 In 353 patients with dermatologic toxicity, 348 
(98.6%) had known severity of toxicity: 206/353 (59.2%) 
patients experienced grade 1 toxicity, 49 (14.1%) grade 
2, 93 (26.7%) grade 3-4. Grade 1 toxicity was found 
in the most patients with only non-rash (76.0%), then 
those with only rash (62.4%), and the least in those 
with concurrent (51.5%) dermatologic toxicity, though 
significance did not reach the p-value threshold (p = 
0.069). The incidence, severity, and onset days for 
the common dermatologic toxicities varied by drugs 
were identified (Table 3). Rash was found the earliest 
occurring (21 median onset days [MOD]) while 
paronychia the latest (69 MOD). A similar distribution 
of incidence, severity and onset time were observed in 
patients with EGFR inhibitors. The responsible drugs 
associated with the common dermatologic toxicities 
were scrutinized (Figure 2). Erlotinib (64.5%), then 
osimertinib (11.3%) and afatinib (11.1%) were 
preponderantly drugs associated with these dermatologic 
events but occurrence rates varied, Figure 2A. Rash 
occurred more frequently in erlotinib (66.5%) than 
in afatinib (58.9%) and osimertinib (44.8%); and 
paronychia was more associated with osimertinib 
(14.9%) and afatinib (10.7%) than erlotinib (4.0%), 
Figure 2B. Other non-skin toxicities mainly reported 
fatigue (14.0%), diarrhea (14.9%), nausea (10.8%), 

anorexia (5.7%), vomiting (4.1%) and anemia (3.4%) 
(Table 2B).
	 When looking into the 442 EGFR inhibitors-
treated patients, 24 (5.4%) patients had none, 23 (5.2%) 
only non-rash dermatologic, 127 (28.7%) concurrent 
dermatologic, 179 (40.5%) only rash, and 89 (20.1%) 
other toxicities. Among them, more patients (315/442, 
71.3%) had EGFR+ tumors. Dermatologic toxicity 
subgroup analysis showed patients with only non-rash 
(81.8%) were the most frequently observed grade 1 
toxicity, then those with rash (64.8%), and the least in 
those with concurrent (50.4%, p = 0.013). In 63 patients 
treated with ALK/ROS1 inhibitors, 6 (9.5%) patients 
had no toxicity, 2 (3.2%) only non-rash dermatologic 
toxicity, 3 (4.8%) concurrent dermatologic toxicity, 5 
(7.9%) only rash and 47 (74.6%) other toxicities. ALK 
and ROS1 mutations were identified in 41/63 (65.1%) 
and 4/63 (6.3%), respectively. Comparison of variables 
was limited by sample size.
	 Patients with dermatologic toxicity (52.3%) had 
similar ORR compared with those without (43.8%, p 
= 0.127). However, when focusing on dermatologic 
toxicity subgroups, we found patients with concurrent 
dermatologic (67.9%) had a significantly higher ORR 
than those with only non-rash dermatologic (53.8%) 
and only rash (41.1%, p < 0.001) toxicities. Similar 
differences were also identified in those with EGFR 
inhibitors (p < 0.001), indicating non-rash dermatologic 
toxicity was more likely to enhance the drug-efficacy 
predictor (Supplemental Table S2, https://www.
biosciencetrends.com/action/getSupplementalData.
php?ID=245). For all patients with targeted therapy, 
multivariable analysis showed patients in concurrent 
dermatologic toxicity group had longer median survival 
years (2.6 years) than those in other groups (1.5-1.9 
years) and lower risk of death (HR 0.71, 95% CI [0.46-
1.10], p = 0.009) adjusting for smoking status, cell 
type, treatment modality, treatment response and age 
(Supplemental Table S3, https://www.biosciencetrends.
com/action/getSupplementalData.php?ID=245). 
Furthermore, when focusing on dermatologic toxicity 
subgroups, the concurrent group was an independent 
predictor of a lower risk of death (HR 0.48, 95% CI 
[0.30-0.77]) (p < 0.001, Figure 3A) adjusting for cell 
type, treatment modality, treatment response, and age 
(Table 4). Severity of drug-related dermatologic toxicities 
showed no correlation with drug efficacy. A similar 
association with dermatologic toxicity and survival 
benefits was found in anti-EGFR agents (Figure 3B). 
However, the limited amount of patients with anti-ALK/
ROS1 agents could not be used for Cox model analysis.
	 These results highlighted the importance of non-rash 
dermatologic toxicities in the drug-efficacy predictive 
value of dermatologic toxicities in targeted therapy-
treated and EGFR inhibitors-treated patients. Concurrent 
dermatologic toxicity predicted a strengthened efficacy 
and longer survival.

https://www.biosciencetrends.com/action/getSupplementalData.php?ID=245
https://www.biosciencetrends.com/action/getSupplementalData.php?ID=245
https://www.biosciencetrends.com/action/getSupplementalData.php?ID=245
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Table 2 (A). The distribution of common dermatologic toxicities in patients with different type of drugs

Most common toxicities 
(N*, %)

Rash
Xerosis
Pruritus
Paronychia
Erythema
Mucositis
Nail changes

Target therapy
N = 353 patients with 727 toxicities*

432 (59.4)
  93 (12.8)
62 (8.5)
51 (7.0)
36 (5.0)
12 (1.7)
12 (1.7)

EGFRIs
N = 329 patients with 681 toxicities*

403 (59.2)
  87 (12.8)
60 (8.8)
51 (7.5)
30 (4.4)
11 (1.6)
12 (1.8)

ALK/ROS1 inhibitors
N = 10 patients with 40 toxicities*

27 (67.5)
  7 (17.5)
  4 (10.0)
  0
  2 (5.0)
  0
  0

**N means the observed toxicities rather than the patient number. Abbreviations: EGFRIs, epidermal growth factor receptor inhibitors; ALK/ROS1, 
anaplastic lymphoma kinase/ c-ros oncogene 1.

Abbreviations: EGFR, epidermal growth factor receptor inhibitors; ALK/ROS1, anaplastic lymphoma kinase/ c-ros oncogene 1.

Table 3. The incidence, severity, and onset days for skin toxicity in patients with different type of drugs

Rash, n (incidence, %)
     Severity, n (%)
          Grade 1
          Grade 2
          Grade 3-4
          NA
     Onset days (median)
Xerosis, n (incidence, %)
     Severity, n (%)
          Grade 1
          Grade 2
          Grade 3
          NA
     Onset days (median)
Erythema, n (incidence, %)
     Severity, n (%)
          Grade 1
          Grade 2
          Grade 3
          NA
     Onset days (median)
Mucositis, n (incidence, %)
     Severity, n (%)
          Grade 1
          Grade 2
          Grade 3
          NA
     Onset days (median)
Pruritus, n (incidence, %)
     Severity, n (%)
          Grade 1
          Grade 2
          Grade 3
          NA
     Onset days (median)
Paronychia, n (incidence, %)
     Severity, n (%)
          Grade 1
          Grade 2
          Grade 3
          NA
     Onset days (median)

Targeted therapy
(n = 353)

327 (92.6)

170 (60.7)
  44 (15.7)
  65 (23.2)
  48
  21
  82 (23.2)

  45 (73.8)
    4 (6.6)
  12 (19.7)
  21
  47
  20 (5.7)

  12 (75.0)
    1 (6.3)
    3 (18.8)
    4
  30.5
    7 (2.0)

    1 (20.0)
    1 (20.0)
    3 (60.0)
    2
  34
  60 (17.0)

  35 (74.5)
    3 (6.4)
    9 (19.1)
  13
  36
  33 (9.3)

  21 (84.0)
    1 (4.0)
    3 (12.0)
    8
  69

EGFR inhibitors
(n = 339)

306 (93.0)

161 (61.7)
  43 (16.5)
  56 (21.5)
  46
  21
  76 (23.1)

  41 (71.9)
    4 (7.0)
  12 (21.1)
  19
  47
  18 (5.5)

  11 (73.3)
    1 (6.7)
    3 (20.0)
    3
  28.5
    7 (2.1)

    1 (20.0)
    1 (20.0)
    3 (60.0)
    2
  34
  57 (17.3)

  34 (77.3)
    3 (6.8)
    7 (15.9)
  13
  34
  33 (10.0)

  21 (84.0)
    1 (4.0)
    3 (12.0)
    8
  69

ALK/ROS1 inhibitors
(n = 10)

    8 (80.0)

    4 (66.7)
    1 (16.7)
    1 (16.7)
    2
  44
    3 (30.0)

    3 (100.0)
-
-
-

177
    1 (10.0)

-
-
-
-

109
-

-
-
-
-
-

    2 (20.0)

    1 (50.0)
-

    1 (50.0)
-

163.5
-

-
-
-
-
 -
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Figure 2. (A) The proportion of responsible drugs for skin toxicities. A total of 22 single agent or combined therapies were related to 6 primary 
skin toxicities. Erlotinib, afatinib and osimertinib were the most frequent associated drugs for rash, pruritus, erythema, mucositis, and paronychia. 
However, erlotinib, osimertinib and cetuximab were more common to cause xerosis. (B) The distribution and proportion of dermatologic toxicity in 
erlotinib, osimertinib, and afatinib. The skin toxicities had different distributions among the three predominate responsible drugs: rash was the most 
common skin toxicity and occurred more frequently in erlotinib (66.5%) than osimertinib (44.9%) and afatinib (58.9%), however, paronychia had a 
lower rate with erlotinib (4.0%) than osimertinib (14.9%) and afatinib (10.7%).

**N means the observed toxicities rather than the patient number. Abbreviations: EGFRIs, epidermal growth factor receptor inhibitors; ALK/ROS1, 
anaplastic lymphoma kinase/ c-ros oncogene 1.

Table 2 (B). The distribution of common non-dermatologic toxicities in patients with different type of drugs

Most common toxicities 
(N*, %)

Fatigue
Diarrhea
Nausea
Anorexia
Vomiting
Anemia

Target therapy
N = 144 patients with 2,383 toxicities**

  334 (14.0)
  355 (14.9)
  257 (10.8)
137 (5.7)
  97 (4.1)
  81 (3.4)

EGFRIs
N = 89 patients with 1,857 toxicities**

  273 (14.7)
  321 (17.3)
  202 (10.9)

114 (6.1)
  74 (4.0)
  60 (3.2)

ALK/ROS1 inhibitors
N = 47 patients with 377 toxicities**

  48 (12.7)
36 (9.5)

  39 (10.3)
16 (4.2)
16 (4.2)
17 (4.5)
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4. Discussion

Dermatologic toxicity is a commonly observed adverse 
effect of targeted therapy, reporting a frequency of 60.6% 
among NSCLC patients in our study. As is known, 
we observed that rash (59.3%) is the most frequent 
dermatologic toxicity associated with targeted therapy, 
consistent with that in the literature (24). Furthermore, 
we delineated the profile of non-rash dermatologic 
toxicities and discovered the strengthened prognostic 
predicting value of concurrent dermatologic toxicities in 
targeted therapy-treated patients.
	 Administration of targeted drugs is standard treatment 
for driver gene-mutated patients (25). Meanwhile, 
gene tests have become a routine recommendation by 
conventional methods, even novel next-generation 
sequencing for screening oncogenic targets (26). 
EGFR mutation is the most common targetable genetic 
driver alteration in lung adenocarcinoma, accounting 
for approximately 40% and 20% of NSCLC patients 
in Asian and non-Asia populations, respectively (27). 
Frequently administered EGFR inhibitors are divided 
into intracellular tyrosine kinase inhibitors (TKIs) 
and monoclonal antibodies inhibitors (mAbs) against 
the extracellular domain of EGFR (28). The main 
mechanism of EGFR inhibitors-related dermatologic 
toxicities is due to the prominent role of EGFR in 
maintaining dermatological homeostasis; EGFR 
inhibitors instigate pathological changes of growth and 
migration arrest and apoptosis, chemokine expression, 
and abnormal maturation and differentiation in skin cells, 
eventually, causing skin disorders (29).
	 In our study, dermatologic toxicity was mostly 
prevalent in erlotinib, afatinib, and osimertinib, which 
were typical three generations of EGFR tyrosine kinase 
inhibitors (EGFR-TKIs). To date, first-generation 
(gefitinib, erlotinib), second-generation (afatinib, 
dacomitinib), and third-generation (osimertinib) 

EGFR-TKIs are approved as standard management 
for sensitive EGFR mutations (30). The frequency of 
various dermatologic toxicities differed in first-, second-, 
third- generation of EGFR-TKIs in phase III trials 
were reported rash at 51.3%, 75.2%, 45.7%, stomatitis 
or mucositis at 11.2%, 27.5%, 21.7%, paronychia at 
9.2%, 30.7%, 28.3%, respectively; additionally, xerosis 
occurred at 23%-36% in osimertinib and pruritus at 7% 
in gefitinib (31). Our results showed a higher frequency 
of rash in erlotinib than afatinib, and similar incidences 
of xerosis and pruritis with those in clinical trials. For 
non-dermatologic toxicities, most notably, diarrhea 
occurred at any grade (grade ≥ 3) was 45.3% (2.6%), 
79.2% (6.8%), 49.1% (1.6%) for first-, second-, third- 
generation of EGFR-TKIs respectively, as validated by 
our study (31).
	 We validated that rash was the earliest occurring 
and most frequent dermatologic toxicity caused by 
EGFR inhibitors, and median onset time was in the 
range of 2-4 weeks (32). Further subgroup analysis 
on the patients showed that less patients had non-rash 
(7.4%) than only rash (54.7%) or concurrent (38.0%) 
dermatologic toxicities. More specifically, we found 
that pruritus, paronychia, and mucositis tended to occur 
with rash. Pruritus concurrent with rash may be related 
to the inflammatory response and probably increased 
keratinocyte expression in growth factors significant to 
mast cells (33). Paronychia is a disorder characterized 
by an inflammatory process involving the soft tissues 
around the nail (34), which emerged latest at a median 
onset 69 days in our study.
	 Although dermatologic symptoms induced by 
EGFR inhibitors appeared to be significantly correlated 
with poor quality of life and compliance (35), rash 
in EGFR inhibitors has been varied to be a surrogate 
biomarker of therapeutic efficacy and improved survival 
for EGFR-mutated patients (36,37) and validated our 
previous study (14). This study highlighted that non-

Figure 3. Kaplan-Meier curves of overall survival in targeted therapy-treated and EGFR inhibitors-treated patients with dermatologic 
toxicity respectively truncated at 5 years. (A) In all 353 targeted therapy-treated patients, patient with concurrent non-rash and rash had better 
survival than those with only non-rash or only rash dermatologic toxicity. (B) In 329 EGFR inhibitors-treated, patient with concurrent non-rash and 
rash had better survival than those with only non-rash or only rash dermatologic toxicity.
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rash dermatologic toxicity played a critical role in 
predicting better response to treatment when looking 
into the higher ORR in patients with concurrent (67.9%) 
or only non-rash (53.8%) dermatologic toxicities 
than those with only rash (41.1%). Furthermore, the 
relationship between dermatologic toxicity and survival 
analysis showed longer survival among patients with 
concurrent toxicity, providing more detailed evidence 
of targeted therapy-induced dermatologic toxicity 
predicting positive treatment response and OS benefit 
(38). Considering prevalence of non-rash dermatologic 
toxicity in the concurrent dermatologic toxicity group, 
rash with pruritus, paronychia or mucositis appeared 
to be associated with improved outcomes. Therefore, 
dermatologic toxicity as a drug-efficacy marker 
for patients with treated therapy called for further 
investigations to differentiate various toxicities, especially 
non-rash dermatologic toxicities.
	 ALK and ROS1 define unique subsets of NSCLC 
patients highly sensitive to ALK/ROS1 targeted drugs. 
However, ALK+ and ROS1+ have a low frequency of 
1.7% and 2.9% among NSCLC patients, respectively 
(39). Therefore, only 63 patients who received 
ALK/ROS1 inhibitors were included in our study. 
Dermatologic toxicity was uncommon in the toxicity 
profile of ALK/ROS1 inhibitors. Rash was the primary 
complaint of dermatologic side effects, reporting rates 
of any grade (grade ≥ 3) at 8.4% in crizotinib, 14.7% 
(0.9%) in alectinib, 15.4% (0.7%) in brigatinib, 12.4% 
in ceritinib, 62.9% (8.0%) in ensartinib, 6.6% (0.2%) in 
lorlatinib (40). We found that ALK/ROS1 inhibitors had 
a low incidence of dermatologic toxicity (15.9%), as 
reported in previous studies.
	 Due to the nature of back-reviewed information, 
clinical data unavoidably produced some bias, such as the 
inaccurately reported and recorded toxicity information, 
even though we have carefully defined each variable. 
Additionally, patients with unavailable or unjudgeable 
toxicity were not included because of outside medical 
records, less than one-month treatment duration and loss 
of follow-up, which might lead to underestimation of the 
occurrence and effects of dermatologic toxicity.
	 In conclusion, non-rash dermatologic toxicity 
appeared to be milder than rash compared to rash 
toxicity, but might be a stronger protective indicator for 
treatment response and survival length in patients who 
received targeted therapy or EGFR inhibitors. Severity 
of dermatologic toxicity showed no correlation with 
survival length. Oncologists and dermatologists need 
to collaborate effectively on the awareness, prevention, 
and treatment of dermatologic toxicity associated with 
targeted drugs.
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1. Introduction

The gut microbiome is a complex ecosystem consisting 
of a diverse community of microorganisms residing in 
the human gastrointestinal tract. Numerous studies have 
demonstrated that a diverse and balanced population of 
gut microbiota is crucial for maintaining gut and overall 
health by facilitating digestion, nutrient absorption, and 
supporting the immune system. Furthermore, mounting 
evidence has suggested that dysbiosis, an imbalance in 
the composition and functionality of gut microbiota, is 
directly or indirectly associated with the pathogenesis of 
various diseases, including obesity (1), diabetes, chronic 
kidney disease (CKD) (2), liver diseases, colorectal 
cancer (CRC) or adenoma (3), and even mental and 

neurodegenerative disease (4-6). Therefore, modulation 
of the gut microbiome composition has been proposed as 
a potential therapeutic target, and dietary interventions 
have been suggested as a means to achieve this goal 
(7). In particular, patients with autoimmune diseases 
display reduced levels of beneficial bacteria, such as 
Bifidobacterium spp., Faecalibacterium spp., Roseburia 
spp., and Coprococcus eutactus, alongside increased 
levels of pathogenic bacteria like Escherichia coli, 
Staphylococcus aureus, and Clostridioides difficile, 
accompanied by microbial-driven TH17/TH1 activation 
and reduced Regulatory T cells, worsening inflammation 
(8-10). Consequently, modulating gut microbiota 
composition is proposed as a therapeutic target, and 
dietary interventions are suggested as a viable approach 

DOI: 10.5582/bst.2024.01393Original Article

SUMMARY: The human gut microbiome is increasingly recognized as important to health and disease, influencing 
immune function, metabolism, mental health, and chronic illnesses. Two widely used, cost-effective, and fast 
approaches for analyzing gut microbial communities are shallow shotgun metagenomic sequencing (SSMS) and 
full-length 16S rDNA sequencing. This study compares these methods across 43 stool samples, revealing notable 
differences in taxonomic and species-level detection. At the genus level, Bacteroides was most abundant in both 
methods, with Faecalibacterium showing similar trends but Prevotella was more abundant in full-length 16S 
rDNA. Genera such as Alistipes and Akkermansia were more frequently detected by full-length 16S rDNA, whereas 
Eubacterium and Roseburia were more prevalent in SSMS. At the species level, Faecalibacterium prausnitzii, a key 
indicator of gut health, was abundant across both datasets, while Bacteroides vulgatus was more frequently detected by 
SSMS. Species within Parabacteroides and Bacteroides were primarily detected by 16S rDNA, contrasting with higher 
SSMS detection of Prevotella copri and Oscillibacter valericigenes. LEfSe analysis identified 18 species (9 species in 
each method) with significantly different detection between methods, underscoring the impact of methodological choice 
on microbial diversity and abundance. Differences in classification databases, such as Ribosomal Database Project 
(RDP) for 16S rDNA and Kraken2 for SSMS, further highlight the influence of database selection on outcomes. These 
findings emphasize the importance of carefully selecting sequencing methods and bioinformatics tools in microbiome 
research, as each approach demonstrates unique strengths and limitations in capturing microbial diversity and relative 
abundances.

Keywords: bacterial profile, microbiome, oxford nanopore technologies (ONT), ion torrent sequencing
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for achieving this modulation (11).
	 Identifying microorganisms at the species level 
offers precise insights that can aid clinicians in 
designing targeted treatments to promote gut health and 
mitigate disease risk. For instance, within the genus 
Bifidobacterium, Bifidobacterium lactis has been shown 
to reduce the risk of diarrhea and fever in children and 
infants (11), whereas Bifidobacterium bifidum is known 
to enhance the immune system and combat pathogens 
(12). Similarly, Faecalibacterium prausnitzii, a member 
of the Firmicutes phylum, is positively correlated with 
gut health and plays a role in reducing inflammation and 
colorectal cancer risk. However, health effects are not 
uniform across all species within the Firmicutes phylum 
(13,14). Current methods for microbiota analysis 
primarily include 16S rDNA amplicon sequencing 
and shotgun metagenomics. The 16S rDNA amplicon 
sequencing method is based on amplifying a specific 
region of the 16S rRNA gene, allowing the identification 
of distinct taxa through variations in the less-conserved 
regions (15). This approach is relatively cost-effective 
and straightforward. However, taxa assignments are 
based on a single genomic region, which can introduce 
amplification biases and affect taxonomic representation 
due to primer choice and amplification error (16,17).  
The 16S rDNA contains nine hypervariable regions 
(V1–V9) surrounded by conserved regions, with 
species-specific variants that enable community-
level identification down to the genus level. Full-
length 16S rDNA sequencing facilitates species-level 
identification(18,19). In contrast, shotgun metagenomics 
sequences the entire microbial community's DNA, 
necessitating greater sequencing depth, thus increasing 
costs, analytical complexity, and potential host DNA 
contamination (20). The downstream analysis in 
shotgun metagenomics relies on reference databases for 
genome assembly, which can result in false positives 
(21). Despite these limitations, shotgun metagenomics 
provides comprehensive microbial genomic information, 
including gene function analysis and insights into 
other microbiome components, such as fungi and 
viruses. In clinical settings, balancing accuracy, cost, 
and processing time is vital for achieving species-level 
microbial profiling.
	 Oxford Nanopore Technologies (ONT) offers 
ultra-long nucleic acid sequencing, with read lengths 
exceeding 2 million base pairs, which enables full-
length 16S rDNA sequencing can improves taxonomic 
resolution by providing a comprehensive sequence of 
informative sites. Additionally, ONT's devices offer 
real-time data acquisition, allowing for immediate 
insights during sequencing runs. This sequencing 
approach facilitates faster (sequencing time 1-2 hours) 
and more accurate microbial community analysis 
(22-24). For metagenomic approaches, studies have 
shown that ~7 Gb of paired-end sequencing data are 
necessary to achieve > 20X coverage for microbes 

at > 1% relative abundance, indicating that shallow 
shotgun metagenomics sequencing (SSMS) is viable for 
preliminary screening (25,26). Ion Torrent offers short-
read sequencing platforms that leverage semiconductor-
based technology to deliver high-throughput data with 
rapid turnaround times. Notably, the GeneStudio™ S5 
System enhances efficiency with automated library 
preparation, enabling high-throughput sequencing data 
in approximately 2 to 4 hours while maintaining ease 
of use (27).  These platforms are cost-effective, making 
them ideal for time-sensitive applications such as 
SSMS.
	 However, comparative studies between SSMS and 
full-length 16S rDNA sequencing remain limited. Most 
prior research has focused on comparing hypervariable 
regions of the 16S rDNA gene, such as V4 or V3-V4, 
using short-read sequencing. These studies have reported 
biases in taxonomic detection due to the targeted 
nature of hypervariable region sequencing, which, 
despite being cost-effective, can lead to incomplete 
microbial profiles (15,28). While some studies have 
explored full-length 16S rDNA sequencing, they have 
primarily compared it with deep shotgun metagenomics 
rather than shallow shotgun sequencing. These studies 
indicate that full-length 16S rDNA sequencing provides 
a more comprehensive representation of dominant 
microorganisms and offers enhanced taxonomic 
resolution for low-abundance taxa in food-related 
matrices (29).
	 This research gap underscores the need for a direct 
comparison between SSMS and full-length 16S rDNA 
sequencing, particularly in terms of cost, time efficiency, 
and taxonomic resolution across diverse microbial 
communities. To address this, our study employs ONT-
based full-length 16S rDNA sequencing alongside SSMS 
using the Ion GeneStudio S5 System to analyze the gut 
microbiota of healthy individuals. We compare alpha 
and beta diversity, identify taxa unique to each method, 
and discuss the broader implications of these sequencing 
strategies for gut microbiome research and future 
applications.

2. Methods

2.1. Sample collection and DNA extraction

In this study, forty-three stool samples were collected 
from consenting participants using collection tubes that 
incorporated DNA/RNA Shield (Zymo Research, USA) 
to preserve microbial specimens. These samples were 
subsequently stored at -20 °C until DNA extraction was 
performed. For DNA extraction, each fecal sample was 
thawed on ice, and 20 mg of material was processed 
using the ZymoBIOMICS DNA Miniprep kit (Zymo 
Research, USA) according to the manufacturer's 
protocol. The extracted DNA was preserved at -20 °C 
until further processing for sequencing.
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and evenness of bacterial species based on their taxa 
abundances.

2.3.2. Shallow shotgun metagenomic sequencing (SSMS)

The taxonomic classification and abundance estimation 
of the shallow shotgun metagenomic sequencing 
data obtained from the gut microbiome samples were 
performed using Kraken2 (36) and Bracken2 (37), 
respectively. The raw reads were aligned against the 
PlusPF database (version 9/19/2020 available at https://
benlangmead.github.io/aws-indexes/k2), which includes 
both the NCBI and RefSeq microbial genomes and 
has been demonstrated to have higher accuracy than 
other databases. Bracken2 was then used to estimate 
the taxonomic abundances at different levels of the 
classification hierarchy by adjusting the classification 
counts based on the distribution of read lengths. The 
resulting output was a table of taxonomic abundances 
at various levels of the classification hierarchy, which 
provided insight into the composition of the gut 
microbiome. An overview method used in this study is 
illustrated in Figure 1.

2.4. Statistical analysis

Statistical analyses were conducted on both 16S rDNA 
and SSMS datasets. The data for bacteria with a relative 
abundance greater than 1% were visualized using 

2.2. Library construction and sequencing

2.2.1. Full length 16S rDNA nanopore sequencing

The full-length of bacterial 16S rDNA was polymerase 
chain reaction (PCR) amplified for 20 cycles using 
primers for targeting regions V1-V9 of the 16S rDNA. 
Primers were described Forword: 5'-TTTCTGTTGGT
GCTGATATTGCAGRGTTYGATYMTGGCTCAG-3' 
and Reverse: 5'-ACTTGCCTG TCGCTCTATCTTCC
GGYTACCTTGTTACGACTT-3' (30). The 20 µL PCR 
reaction contained 1 µg of DNA template, 0.2 µM of 
each primer, 0.2 mM of dNTPs, and 0.4 U of Phusion 
DNA Polymerase (Thermo Scientific, USA). The 1 µg 
of DNA template were used in the total volume (20 µL) 
of PCR reaction. The barcode sequences were added to 
PCR products using the PCR Barcoding Expansion Kit 
(Oxford Nanopore Technologies, UK). The products 
were checked by 1% agarose gel electrophoresis and 
purified using the QIAquick® PCR Purification Kit 
(QIAGEN, Germany). The samples were pooled at equal 
concentration and purified using AMPure XP beads 
(Beckman Coulter, USA). The final products of full-
length V1-V9 region of 16S rDNA, were sequenced 
using Ligation Sequencing Kit (Oxford Nanopore 
Technologies, UK) and flow cell version R10.4 (Oxford 
Nanopore Technologies, UK).

2.2.2. Shallow shotgun metagenomic sequencing (SSMS)

Library preparation was performed using the Ion 
Xpress™ Fragment Library Kit (Thermo Fisher 
Scientific) with 100 ng of DNA as input. Adapter 
ligation, size selection, nick repair, and amplification 
followed the manufacturer's protocol. Sequencing was 
conducted on the Ion GeneStudio S5 System (Thermo 
Fisher Scientific, USA).

2.3. Bioinformatics analysis

2.3.1. 16S rDNA nanopore sequencing (16S rDNA)

The FAST5 files were base called  by using Guppy 
basecaller software v6.0.7 (31) (Oxford Nanopore 
Technologies, UK) with a super-accuracy model to 
generate pass reads (FASTQ format) with a minimum 
acceptable quality score (Q > 10). The quality of reads 
was examined by MinIONQC (32). Then, FASTQ 
sequences were demultiplexed and adaptor-trimmed 
using Porechop v0.2.4 (https://github.com/rrwick/
Porechop). The filtered reads were then clustered, 
polished, and taxonomically classified by NanoCLUST 
(33) based on the size sequences for the V1-V9 region 
of 16S rDNA sequences from Ribosomal Database 
Project (RDP) database (34). The abundance taxonomic 
assignment data were converted into QIIME2 software 
v2021.2 (35) data format for illustrating the richness 

Figure 1. Overview of analytical plan for bacterial taxonomy 
identification from stool samples using Full-Length 16S rDNA 
Amplicon Sequencing (Full-length 16S rDNA) and Shallow Shotgun 
Metagenome sequencing (SSMS).
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threshold cut-off values (38). Alpha diversity measures, 
including Observed Species and Chao1, were utilized to 
assess species richness, while the Shannon and Simpson 
indices were employed to evaluate both richness and 
evenness. Each alpha diversity measure was calculated 
using the R software (version 3.5.0) with the vegan 
package, aiming to examine microbiota diversity across 
the datasets. The relative abundance was compared 
between the two approaches using the Wilcoxon 
signed-rank test, which was performed in Python using 
the Pandas and SciPy libraries. Beta-diversity was 
analyzed using PERMANOVA tests based on Bray-
Curtis and Jaccard distances, as implemented in the 
MicrobiomeAnalyst tools (39).  Statistical significance 
was attributed to P-values less than 0.01 for ensuring 
robust statistical interpretation.

2.5. Data availability

The raw sequence reads generated during this study 
have been submitted to the NCBI Sequence Read 
Archive database under the BioProject accession number 
PRJNA1089554. The raw reads for full-length 16S rDNA 
sequencing and SSMS are available under BioSample 
accessions SAMN40544624 and SAMN40544783, 
respectively.

2.6. Ethics statement

The experiments were conducted after obtaining the 
approval of Ethical Committee of the Khon Kaen 
University Ethics Committee for Human Research on 
HE681056. This Research was conducted in accordance 
with the Declaration of Helsinki.

3. Results

3.1. Sequencing data

In this microbiome sequencing study, we compared two 
different sequencing methods: 16S rDNA full-length by 
Oxford Nanopore Technology sequencing (16S rDNA) 
and shallow shotgun metagenomic sequencing by Ion 

Torrent System (SSMS). The dataset comprised 43 
samples, yielding a range of 3,622 to 89,831 raw reads 
for the 16s rDNA (mean: 11,677 ± 2,38) and 1,590,861 
to 3,200,974 raw reads for the SSMS 1,590,861 to 
3,200,974 (mean: 2,449,982 ± 44,489). The mapped 
reads for 16S rDNA ranged from 1,453 to 62,973 with an 
average of 8,489 ± 1,705. For SSMS, the mapped reads 
from 501,452 to 1,846,203, with a mean of 1,167,404 
± 52,511. Percentages of mapped reads were 46.96% 
(95% CI: 4.51-19.02%) and 71.91% (95% CI: 40.12-
87.87%) for 16S rDNA full-length and shallow shotgun 
metagenomic sequencing, respectively (Table 1). Our 
findings provide important insights into the performance 
of these two sequencing methods and their potential 
application in microbiome studies.

3.2. Diversity of bacterial composition between shallow 
shotgun metagenomic sequencing and full-length 16S 
rDNA amplicon sequencing

To investigate gut microbial patterns associated with 
technical methods, we compared available microbiome 
data generated by two different approaches (shallow 
shotgun metagenomic sequencing (SSMS) and full-
length 16S rDNA sequencing (full-length 16S rDNA)). 
Initial analysis without data cut-off parameter revealed 
a core microbiome of 7 phyla and 81 bacterial 
species common to both protocols. However, SSMS 
demonstrated greater sensitivity, identifying an additional 
31 phyla, 1,235 genera, and 2,613 bacterial species. The 
full-length 16S rDNA approach also detected unique 
microbes, with 181 species belonging to 109 genera not 
found in the SSMS dataset. Applying a 1% abundance 
threshold narrowed the focus to a diverse bacterial 
community composed of 7 distinct phyla, 83 genera, and 
205 species. There was significant overlap between the 
methods 47 genera (37.93%) and 113 species (54.00%) 
detected by both approach), while each method also 
demonstrated unique detection capabilities (13 genera 
(10.13%) and 38 species (16.50%) unique to SSMS, 23 
genera (51.90%) and 54 species (29.50%) unique to full-
length 16S rDNA sequencing (Figure 2). Furthermore, 
we observed discrepancies in bacterial nomenclature 

Table 1. Sequencing statistic

Types

No. of Reads

No. of Mapped Reads

%mapped reads

full-length 16S rDNA

  3,622
89,831

 11,677 ± 2,387
   6,737 - 9,001

   1,453
62,973

   8,489 ± 1,705
  4,436

   71.91 ± 1.562
  40.12 - 87.87

Statistic value

Minimum
Maximum
Mean±Std.
95% CI of median (0.9685)
Minimum
Maximum
Mean ± Std.
95% CI of median (0.9685)
Mean ± Std.
95% CI of median (0.9685)

 SSMS

  6,363,443
12,803,895

   9,799,926 ± 177,956
       9,151,579 - 10,276,515

   501,452
1,846,203

 1,167,404 ± 52,511
1,000,816

        11.99 ± 0.5205
        4.51 - 19.02

Sequencing approach
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across databases. For example, Bacteroides vulgatus 
was designated as Phocaeicola vulgatus, Eubacterium 
eligens as Lachnospira eligens, and Clostridium bolteae 
as Enterocloster bolteae (Supplemental Table S1, https://
www.biosciencetrends.com/supplementaldata/249). After 
consolidating taxa names, our analysis identified 200 
bacterial species with 79 genera. The full-length 16S 
rDNA sequencing method detected a higher number of 
species (161 species) compared to SSMS (96 species) 

(Figure 2) and will therefore be used for further analysis.
	 Alpha diversity was quantified by observed richness 
(Figure 3A), Chao1 index (Figure 2B), Shannon's 
diversity (Figure 3C), and Simpson's diversity (Figure 
3D), to evaluate bacterial richness and evenness across 
the two identification approaches. Analysis of full-length 
16S rDNA sequencing revealed significantly higher 
bacterial diversity compared to the SSMS method, as 
demonstrated by all four diversity indices (Wilcoxon test, 
p < 0.01). Beta diversity analysis of the gut microbiome, 
assessed using Bray-Curtis and Jaccard dissimilarity 
indices, revealed significant separation between datasets 
generated by the two sequencing approaches (p < 0.001, 
Figure 3E and 3F).

3.3. Relative abundance and core species of gut 
microbiome from shallow shotgun metagenomic 
sequencing and full-Length 16S rDNA amplicon 
sequencing

At the phylum level, Bacteroidetes predominated in 
the SSMS method, accounting for 57.60% of the total 
abundance, whereas it was the second most abundant 
phylum in the full-length 16S rDNA sequencing 
method, constituting 30.93%. Conversely, Firmicutes 
was the most abundant phylum detected by the full-
length 16S rDNA method, representing 57.40% of 
the observed microbiota, and was observed as the 
second most abundant phylum in the SSMS method, 
with a relative abundance of 28.93%. Additionally, 
Proteobacteria exhibited a higher prevalence in the 

Figure 2. Bacterial taxonomic identification counts by sequencing 
approach (phyla, genera, and species).

Figure 3. Comparison of gut microbiome diversity measures between sequencing approaches. Alpha diversity is represented by Observed 
species (A), Chao1 (B), Shannon index (C), and Simpson index (D), with significant differences determined by the Wilcoxon rank-sum test (p < 0.001). 
Beta diversity is visualized using Principal Coordinate Analysis (PCoA) with Bray-Curtis (E) and Jaccard (F) dissimilarity indices, with statistical 
significance determined by the PERMANOVA test (p < 0.001).

https://www.biosciencetrends.com/supplementaldata/249
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SSMS dataset, with a relative abundance of 7.17%, 
compared to 5.62% in the full-length 16S rDNA dataset 
(Supplemental Table S2, https://www.biosciencetrends.
com/supplementaldata/249). The phyla Actinobacteria, 
Fusobacteria, Lentisphaerae, and Verrucomicrobia 
displayed low abundance in both methodologies (Figure 
4A). However, the statistical analysis using the Wilcoxon 
signed-rank test showed that the total abundance at the 
phylum level is not significantly different between the 
two approaches (p = 0.974).
	 At the genus level, Bacteroides emerged as the 
most abundant genus within both datasets, although 
its presence was significantly greater in the SSMS 
dataset (47.18%) compared to the full-length 16S rDNA 
method (Figure 4C). Conversely, Faecalibacterium 
ranked as the second most abundant genus in the 

SSMS dataset (10.10%) but demonstrated markedly 
lower abundance in the full-length 16S rDNA dataset 
(1.11%). In contrast, Prevotella exhibited a high relative 
abundance of 8.36% in the full-length 16S rDNA 
dataset, significantly exceeding its presence in the SSMS 
dataset (1.83%). Other genera, including Alistipes, 
Escherichia, Parabacteroides, and Akkermansia, also 
showed higher relative abundances in the full-length 
16S rDNA dataset compared to SSMS. Meanwhile, 
Eubacterium, Roseburia, Bifidobacterium, Prevotella, 
Oscillibacter, Clostridium, Blautia, and Ruminococcus 
were more prevalent in the full-length 16S dataset 
than in SSMS. Despite these variances at the genus 
level, there was no significant difference in the overall 
abundance of bacterial communities between the 
two methods (P = 0.443), as shown in Figure 4B and 

 Figure 4. The relative abundance of gut microbiota between sequencing approaches is shown across different taxonomic levels, including 
phylum (A), genus (B), and species (C). The percentages of relative abundance at each level are displayed for individual samples and group 
averages for both full-length 16S rRNA and SSMS sequencing approaches.

https://www.biosciencetrends.com/supplementaldata/249
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Supplemental Table S2 (https://www.biosciencetrends.
com/supplementaldata/249).
	 Notably, at the species level, Faecalibacterium 
prausnitzii maintained a consistent dominance in 
both the SSMS (11.07%) and full-length 16S rDNA 
methodologies (9.94%). In stark contrast, Bacteroides 
vulgatus was significantly more dominant in the SSMS 
dataset, with 15.71%, compared to a considerably 
lower prevalence of 4.66% in the full-length 16S rDNA 
dataset. Additionally, a suite of species within the 
Parabacteroides and Bacteroides genera exhibited higher 
abundances solely in the full-length 16S rDNA dataset, 
including Parabacteroides distasonis, Bacteroides 
distasonis, Bacteroides dorei, Bacteroides uniformis, 
Bacteroides fragilis, Bacteroides thetaiotaomicron, 
Bacteroides xylanisolvens, Bacteroides caccae, and 
Bacteroides ovatus. Conversely, Prevotella copri and 
Oscillibacter valericigenes showed a notably higher 
prevalence in the SSMS dataset, with relative abundances 
of 6.90% and 5.16%, respectively. These data reveal 
disparities at the species level, indicating a statistically 
significant difference in the total relative abundance of 
species between the two datasets, with an extremely 
low P-value (P = 2.27e−13) as shown in Figure 4C and 
Supplemental Table S2 (https://www.biosciencetrends.
com/supplementaldata/249).

3.4. Differential detection of microbes using SSMS and 
full-length 16S rDNA sequencing

The LEfSE analysis revealed marked significant 
differences (p < 0.01, LDA > 5, LDA < -5) across 18 
bacterial species, as depicted in Figure 4A. The nine 
species—Escherichia coli, Bacteroides ovatus, Bacteroides 
caccae, Parabacteroides distasonis, Bacteroides 
thetaiotaomicron, Bacteroides fragilis, Bacteroides 
dorei, Bacteroides uniformis, and Bacteroides vulgatus 
exhibited elevated detection rates when analyzed using 
SSMS, as shown in Figure 5B. In contrast, an equivalent 
number of species, including Oscillibacter valericigenes, 
Bacteroides plebeius, Lachnospira pectinoschiza, Blautia 
obeum, Gemmiger formicilis, Ruminococcus torques, 
Bacteroides massiliensis, Bacteroides stercoris, and 
Megamonas rupellensis, demonstrated 50 to 0 percent 
relative abundance when sequenced using the full-length 
16S rDNA approach but were not detectable via SSMS, 
as illustrated in Figure 5C. These findings underscore 
significant disparities in the detection of relative 
abundances of gut microbiota attributable to the two 
sequencing methodologies employed.

4. Discussion

To comprehensively evaluate the bacteria taxa detection 
from pair samples using two methods: 16S full-length 
rDNA sequencing from oxford nanopore technology 
with classification by the RDP database and shallow 

shotgun metagenomic sequencing by ion torrent with 
classification by Kraken2. Although the SSMS was 
applied in this study, the number of bacterial reads 
was identified as 1,167,404 reads (the average of 43 
samples), consistent with previous reports that SSMS 
data were assigned accuracy taxonomic in species levels 
(40). Despite the similar time and cost requirements 
of the two approaches, there is a substantial difference 
in their data output, with one method yielding 
approximately 839 times more data than the other. This 
divergence is primarily attributed to the specific gene 
amplification and random sequencing of all nucleotides, 
which results in a low mapping ratio for the SSMS 
approach, recorded at only 11.91%. Consequently, the 
SSMS method required a significantly higher number of 
reads compared to the full-length 16S rDNA sequencing 
approach, which achieved a much higher mapping 
percentage of approximately 71.91%. These findings 
align with previous studies using V4 region 16S rDNA 
sequencing, which reported mapping percentages of 
94.4% (41).
	 Numerous studies have compared V4 or V3-V4 16S 
rDNA sequencing with shotgun and shallow shotgun 
metagenomic sequencing, with most findings suggesting 
that SSMS is more effective for identifying bacterial 
species than V4 or V3-V4 16S rDNA sequencing 
(25,28,42). However, our results using full-length 16S 
rDNA sequencing indicate the opposite. Our findings 
show that 29.5% of the identified species were detected 
exclusively by the full-length 16S rDNA method, 
while only 16.5% were identified solely by the SSMS 
method. Although without applying a cutoff to exclude 
species with a relative abundance lower than 1%, 
SSMS identified a larger number of species (2,613 
species). Many of these identifications were at very 
low abundance, suggesting that they may be artifact 
reads. After applying the 1% cutoff, only 94 species 
remained. This discrepancy may be due to the different 
methodological sensitivities and biases inherent in each 
approach. Full-length 16S rDNA sequencing provides 
more comprehensive coverage of the rRNA gene, 
which may lead to more accurate species identification, 
particularly for low-abundance or rare taxa. In contrast, 
SSMS, while effective at capturing a broad range of 
species, may include a higher number of false positives, 
especially when low-abundance thresholds are not 
applied. We observed significant differences in the gut 
microbial profiles between the two approaches, from 
alpha diversity (richness) to beta diversity, even though 
the Shannon index showed no significant difference. 
This suggests that the methods differ in their ability to 
capture species diversity and community composition. 
Despite these differences, both methods consistently 
identified Bacteroidetes and Firmicutes as the 
predominant phyla, which aligns with previous studies 
of the gut microbiome in healthy individuals (43,44).
	 The comparative analysis of shallow shotgun 

https://www.biosciencetrends.com/supplementaldata/249
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metagenomic sequencing (SSMS) and full-length 16S 
rDNA sequencing highlights distinct discrepancies 
in the relative abundances of bacterial genera and 
species within the gut microbiome. Both methods 
efficiently capture major microbial groups; however, 
they demonstrate significant variation in detecting less 
abundant taxa. At the phylum level, Bacteroides and 
Faecalibacterium were more prevalent in the SSMS 
dataset, potentially reflecting the method's increased 
sensitivity to these groups due to broader genomic 
coverage and a more extensive database (45). This 
observation aligns with prior studies that indicate SSMS 
method efficacy in detecting a wide range of taxa, 

particularly those with greater genomic diversity.
	 At the species level, Faecalibacterium prausnitzii 
exhibited stable abundance across both methods, 
underscoring its role as a resilient and central component 
of the gut microbiome. F. prausnitzii, recognized for 
its high prevalence within the human gut, has been 
consistently linked to beneficial gut health effects, with 
decreased levels associated with inflammatory diseases 
such as Crohn's disease and ulcerative colitis (13,46-
48).  In contrast, notable differences in the abundance 
of Bacteroides vulgatus and other Bacteroides species 
between the SSMS and full-length 16S rDNA datasets 
suggest that SSMS may either overestimate or capture 

Figure 5. Identification of differentially abundant bacterial species. (A) Linear discriminant analysis (LDA) scores from LEfSe analysis reveal 
species with differential abundance (p < 0.01, LDA > 5 or LDA < -5).  SSMS (B) and full-length 16S rDNA sequencing (C) each show species with 
significantly higher abundance as detected by their respective approaches, with significant differences determined by the Wilcoxon rank-sum test (p < 
0.001).
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strain-level variations not detected by full-length 16S 
rDNA sequencing (49). Additionally, the prominence of 
Prevotella copri and Oscillibacter valericigenes in the 
SSMS dataset suggests that SSMS may better capture 
specific species; however, this observation could be 
influenced by low-abundance artifacts(50).
	 The SSMS method identified P. vulgatus ,  a 
bacterium associated with gastrointestinal diseases 
such as inflammatory bowel disease (IBD), colorectal 
cancer, and obesity (50). Interestingly, Prevotella 
copri, frequently associated with both beneficial and 
detrimental health effects, was predominantly detected 
in the SSMS dataset, while Oscillibacter valericigenes, 
a challenging bacterium to culture linked to bacteremia, 
showed low abundance in SSMS, suggesting a potential 
advantage of the full-length 16S rDNA method 
for profiling low-abundance taxa (51). Moreover, 
Lachnospira eligens, also referred to by its basionym 
Eubacterium eligens, was detected by SSMS, while E. 
eligens was primarily identified through full-length 16S 
rDNA sequencing, illustrating taxonomic discrepancies 
between the two methods due to database differences. 
The consistent detection of Bacteroides dorei by SSMS, 
known for promoting the proliferation of gut probiotics, 
highlights SSMS's potential utility in identifying 
functionally significant species (52).
	 The taxonomic naming discrepancies observed 
between databases underscore the critical role 
of database choice in microbiome research. The 
RDP database, commonly used for full-length 16S 
rDNA classification, contrasts with Kraken2, which 
efficiently processes large datasets from high-
throughput sequencing platforms like Illumina and Ion 
Torrent Torrent (53,54). Previous studies affirm that 
database selection significantly affects the detection 
and classification of microbiota, further complicating 
comparisons across sequencing techniques (45).
	 Overall, both full-length 16S rDNA sequencing 
and shallow shotgun metagenomic sequencing (SSMS) 
demonstrated time- and cost-efficiency, making them 
suitable for clinical applications. However, method and 
database selection significantly impact the detection of 
low-abundance gut microbiome species, emphasizing 
the need for careful evaluation. The findings highlight 
the need for critical evaluation of these methodologies, 
as each offers unique benefits and limitations regarding 
microbial diversity and relative abundance resolution. 
A major strength of this study is the first comparative 
analysis of full-length 16S rDNA sequencing and SSMS 
within the same sample set, minimizing inter-sample 
variability while providing a cost-effective, species-level 
microbiome characterization. 16S rDNA sequencing 
offers higher taxonomic resolution, particularly for 
dominant bacterial species, whereas SSMS captures 
some broader genomic insights detection the functional 
genes as antibiotic resistance and virulence factors, 
making it valuable for infection control. However, 

SSMS requires higher data and cost compared to 16S 
rDNA sequencing, which is approximately two times 
more cost-effective, making it more practical for routine 
clinical microbiome profiling. Despite these advantages, 
certain limitations must be acknowledged. The small 
sample size (n = 43) may impact generalizability, and 
database-dependent taxonomic biases could influence 
microbial classification. The observed method-
dependent differences suggest that an integrative 
approach combining SSMS and full-length 16S rDNA 
sequencing could provide a more comprehensive 
microbiome profile. To advance microbiome research, 
standardized classification pipelines are needed to 
reduce inter-study variability. Expanding sample sizes 
and diversifying study populations will enhance the 
robustness and clinical relevance of findings. This 
approach will enhance considerations for selecting 
gut microbiome detection methods, facilitating its 
integration into clinical diagnostics.

5. Conclusion

The comparative study of SSMS and full-length 16S 
rDNA sequencing highlights the impact of sequencing 
method and database choice on gut microbiome analysis. 
Despite comparable time and cost requirements, SSMS 
yielded significantly more data, primarily due to its 
broad genomic coverage. However, the full-length 16S 
rDNA approach offered higher mapping accuracy and 
identified unique bacterial taxa, particularly at low 
abundances. Differences in taxonomic classification 
between RDP and Kraken2 further emphasize the 
influence of database selection on identification 
accuracy. Notably, Bacteroides vulgatus, Prevotella 
copri and Oscillibacter valericigenes  exhibited 
method-dependent detection patterns, underscoring 
the critical role of methodological choice in microbial 
analysis. Given these differences, integrating SSMS 
and full-length 16S rDNA sequencing may provide 
a more comprehensive relevant representation of gut 
microbiota. To advance microbiome research and its 
clinical applications, the development of standardized 
classification pipelines and expansion of study cohorts 
with diverse populations are essential. These efforts will 
enhance the accuracy, consistency, and clinical relevance 
of microbial community profiling, ultimately deepening 
our understanding of the gut microbiome's role in health 
and disease.
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please state "There is no conflict of interest to disclose".

Submission Declaration: When a manuscript is considered for 
submission to BioScience Trends, the authors should confirm that 1) no 
part of this manuscript is currently under consideration for publication 
elsewhere; 2) this manuscript does not contain the same information 
in whole or in part as manuscripts that have been published, accepted, 
or are under review elsewhere, except in the form of an abstract, a 
letter to the editor, or part of a published lecture or academic thesis; 
3) authorization for publication has been obtained from the authors' 
employer or institution; and 4) all contributing authors have agreed to 
submit this manuscript.

Initial Editorial Check: Immediately after submission, the journal's 
managing editor will perform an initial check of the manuscript. A 
suitable academic editor will be notified of the submission and invited 
to check the manuscript and recommend reviewers. Academic editors 
will check for plagiarism and duplicate publication at this stage. The 
journal has a formal recusal process in place to help manage potential 
conflicts of interest of editors. In the event that an editor has a conflict 
of interest with a submitted manuscript or with the authors, the 
manuscript, review, and editorial decisions are managed by another 
designated editor without a conflict of interest related to the manuscript. 

Peer Review: BioScience Trends operates a single-anonymized review 
process, which means that reviewers know the names of the authors, 
but the authors do not know who reviewed their manuscript. All articles 
are evaluated objectively based on academic content. External peer 
review of research articles is performed by at least two reviewers, and 
sometimes the opinions of more reviewers are sought. Peer reviewers 
are selected based on their expertise and ability to provide quality, 
constructive, and fair reviews. For research manuscripts, the editors may, 
in addition, seek the opinion of a statistical reviewer. Every reviewer is 
expected to evaluate the manuscript in a timely, transparent, and ethical 
manner, following the COPE guidelines (https://publicationethics.
org/files/cope-ethical-guidelines-peer-reviewers-v2_0.pdf). We ask 
authors for sufficient revisions (with a second round of peer review, 
when necessary) before a final decision is made. Consideration for 
publication is based on the article's originality, novelty, and scientific 
soundness, and the appropriateness of its analysis. 

Suggested Reviewers: A list of up to 3 reviewers who are qualified 
to assess the scientific merit of the study is welcomed. Reviewer 
information including names, affiliations, addresses, and e-mail 
should be provided at the same time the manuscript is submitted 
online. Please do not suggest reviewers with known conflicts of 
interest, including participants or anyone with a stake in the proposed 
research; anyone from the same institution; former students, advisors, 
or research collaborators (within the last three years); or close personal 
contacts. Please note that the Editor-in-Chief may accept one or more 
of the proposed reviewers or may request a review by other qualified 
persons.

Language Editing: Manuscripts prepared by authors whose native 
language is not English should have their work proofread by a native 
English speaker before submission. If not, this might delay the 
publication of your manuscript in BioScience Trends.
	 The Editing Support Organization can provide English 
proofreading, Japanese-English translation, and Chinese-English 
translation services to authors who want to publish in BioScience 
Trends and need assistance before submitting a manuscript. Authors 
can visit this organization directly at https://www.iacmhr.com/iac-
eso/support.php?lang=en. IAC-ESO was established to facilitate 
manuscript preparation by researchers whose native language is not 
English and to help edit works intended for international academic 
journals.

Copyright and Reuse: Before a manuscript is accepted for 
publication in BioScience Trends, authors will be asked to sign a 
transfer of copyright agreement, which recognizes the common 

interest that both the journal and author(s) have in the protection of 
copyright. We accept that some authors (e.g., government employees 
in some countries) are unable to transfer copyright. A JOURNAL 
PUBLISHING AGREEMENT (JPA) form will be e-mailed to the 
authors by the Editorial Office and must be returned by the authors 
by mail, fax, or as a scan. Only forms with a hand-written signature 
from the corresponding author are accepted. This copyright will ensure 
the widest possible dissemination of information. Please note that the 
manuscript will not proceed to the next step in publication until the JPA 
Form is received. In addition, if excerpts from other copyrighted works 
are included, the author(s) must obtain written permission from the 
copyright owners and credit the source(s) in the article. 

4. Cover Letter

The manuscript must be accompanied by a cover letter prepared by 
the corresponding author on behalf of all authors. The letter should 
indicate the basic findings of the work and their significance. The letter 
should also include a statement affirming that all authors concur with 
the submission and that the material submitted for publication has not 
been published previously or is not under consideration for publication 
elsewhere. The cover letter should be submitted in PDF format. For an 
example of Cover Letter, please visit: https://www.biosciencetrends.
com/downcentre (Download Centre).

5. Submission Checklist

The Submission Checklist should be submitted when submitting 
a manuscript through the Online Submission System. Please visit 
Download Centre (https://www.biosciencetrends.com/downcentre) and 
download the Submission Checklist file. We recommend that authors 
use this checklist when preparing your manuscript to check that all 
the necessary information is included in your article (if applicable), 
especially with regard to Ethics Statements.

6. Manuscript Preparation

Manuscripts are suggested to be prepared in accordance with 
the "Recommendations for the Conduct, Reporting, Editing, and 
Publication of Scholarly Work in Medical Journals", as presented at 
https://www.ICMJE.org.

Manuscripts should be written in clear, grammatically correct English 
and submitted as a Microsoft Word file in a single-column format. 
Manuscripts must be paginated and typed in 12-point Times New 
Roman font with 24-point line spacing. Please do not embed figures 
in the text. Abbreviations should be used as little as possible and 
should be explained at first mention unless the term is a well-known 
abbreviation (e.g. DNA). Single words should not be abbreviated.

Title page: The title page must include 1) the title of the paper (Please 
note the title should be short, informative, and contain the major key 
words); 2) full name(s) and affiliation(s) of the author(s), 3) abbreviated 
names of the author(s), 4) full name, mailing address, telephone/fax 
numbers, and e-mail address of the corresponding author; 5) author 
contribution statements to specify the individual contributions of all 
authors to this manuscript, and 6) conflicts of interest (if you have an 
actual or potential conflict of interest to disclose, it must be included as 
a footnote on the title page of the manuscript; if no conflict of interest 
exists for each author, please state "There is no conflict of interest to 
disclose").

Abstract: The abstract should briefly state the purpose of the study, 
methods, main findings, and conclusions. For articles that are Original 
Articles, Brief Reports, Reviews, or Policy Forum articles, a one-
paragraph abstract consisting of no more than 250 words must be 
included in the manuscript. For Communications, Editorials, News, 
or Letters, a brief summary of main content in 150 words or fewer 
should be included in the manuscript. For articles reporting clinical 
trials, the trial registration number should be stated at the end of the 
Abstract. Abbreviations must be kept to a minimum and non-standard 
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course. In: Post-traumatic Stress Disorder, Diagnosis, Management 
and Treatment (Nutt DJ, Davidson JR, Zohar J, eds.). Martin Dunitz, 
London, UK, 2000; pp. 1-15.

Example 4 (Sample web page reference):

World Health Organization. The World Health Report 2008 – primary 
health care: Now more than ever. http://www.who.int/whr/2008/whr08_
en.pdf (accessed September 23, 2022).

Tables: All tables should be prepared in Microsoft Word or Excel and 
should be arranged at the end of the manuscript after the References 
section. Please note that tables should not in image format. All tables 
should have a concise title and should be numbered consecutively with 
Arabic numerals. If necessary, additional information should be given 
below the table.

Figure Legend: The figure legend should be typed on a separate 
page of the main manuscript and should include a short title and 
explanation. The legend should be concise but comprehensive and 
should be understood without referring to the text. Symbols used 
in figures must be explained. Any individually labeled figure parts 
or panels (A, B, etc.) should be specifically described by part name 
within the legend.

Figure Preparation: All figures should be clear and cited in numerical 
order in the text. Figures must fit a one- or two-column format on the 
journal page: 8.3 cm (3.3 in.) wide for a single column, 17.3 cm (6.8 
in.) wide for a double column; maximum height: 24.0 cm (9.5 in.). 
Please make sure that the symbols and numbers appeared in the figures 
should be clear. Please make sure that artwork files are in an acceptable 
format (TIFF or JPEG) at minimum resolution (600 dpi for illustrations, 
graphs, and annotated artwork, and 300 dpi for micrographs and 
photographs). Please provide all figures as separate files. Please note 
that low-resolution images are one of the leading causes of article 
resubmission and schedule delays.

Units and Symbols: Units and symbols conforming to the International 
System of Units (SI) should be used for physicochemical quantities. 
Solidus notation (e.g. mg/kg, mg/mL, mol/mm2/min) should be used. 
Please refer to the SI Guide www.bipm.org/en/si/ for standard units.

Supplemental data: Supplemental data might be useful for supporting 
and enhancing your scientific research and BioScience Trends accepts 
the submission of these materials which will be only published online 
alongside the electronic version of your article. Supplemental files 
(figures, tables, and other text materials) should be prepared according 
to the above guidelines, numbered in Arabic numerals (e.g., Figure 
S1, Figure S2, and Table S1, Table S2) and referred to in the text. All 
figures and tables should have titles and legends. All figure legends, 
tables and supplemental text materials should be placed at the end of 
the paper. Please note all of these supplemental data should be provided 
at the time of initial submission and note that the editors reserve the 
right to limit the size and length of Supplemental Data.

5. Submission Checklist

The Submission Checklist will be useful during the final checking of a 
manuscript prior to sending it to BioScience Trends for review. Please 
visit Download Centre and download the Submission Checklist file.

6. Online Submission

Manuscripts should be submitted to BioScience Trends online at 
https://www.biosciencetrends.com/login. Receipt of your manuscripts 
submitted online will be acknowledged by an e-mail from Editorial 
Office containing a reference number, which should be used in all 
future communications. If for any reason you are unable to submit a 
file online, please contact the Editorial Office by e-mail at office@
biosciencetrends.com

abbreviations explained in brackets at first mention. References should 
be avoided in the abstract. Three to six key words or phrases that do not 
occur in the title should be included in the Abstract page.

Introduction: The introduction should provide sufficient background 
information to make the article intelligible to readers in other 
disciplines and sufficient context clarifying the significance of the 
experimental findings

Materials/Patients and Methods: The description should be brief but 
with sufficient detail to enable others to reproduce the experiments. 
Procedures that have been published previously should not be described 
in detail but appropriate references should simply be cited. Only new 
and significant modifications of previously published procedures 
require complete description. Names of products and manufacturers 
with their locations (city and state/country) should be given and sources 
of animals and cell lines should always be indicated. All clinical 
investigations must have been conducted in accordance Materials/
Patients and Methods.

Results: The description of the experimental results should be succinct 
but in sufficient detail to allow the experiments to be analyzed and 
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