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1. Introduction

MicroRNAs (miRNAs) are endogenous small non-
coding RNA molecules that can regulate gene 
expression at the posttranscriptional level by binding 
with 3'-untranslated regions (UTRs) of the target 
mRNAs through base pairing. About 80% of miRNA 
genes are located within introns of defined transcription 
units, and their expression is frequently correlated with 
expression profiles of their host genes (1). Currently, 

it is estimated that a miRNA may regulate hundreds of 
target genes and most of human protein coding genes 
are regulated by miRNAs. miRNA plays critical roles in 
many important biological processes, and it is therefore 
suggested that miRNAs are also involved in human 
complex diseases such as cancers (2), heart diseases (3), 
nervous system damage (4) and so on. 
 On the other hand, in recent years, genome-wide 
association studies (GWAS) have become an increasingly 
effective tool to identify genetic variation associated with 
the risk of complex diseases (5,6). However, currently 
identified genetic variants collectively can explain only 
a small proportion of disease phenotypic variance, and 
the noise causes many of the identified signals to be 
false positive loci. A noteworthy observation is that 
miRNAs are wide and key regulators of gene expression, 
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miRNA-related Single Nucleotide Polymorphisms 
(SNPs) including SNPs in miRNA genes and target 
sites therefore may function as regulatory SNPs through 
modifying miRNA regulation to affect phenotypes and 
disease susceptibility (7,8). More and more evidence 
has shown that SNPs in target sites or miRNA genes 
are associated with diseases (7,8). For example, Chen 
and Rajewsky uncovered that SNP density in conserved 
miRNA sites was lower than in conserved control 
sites, suggesting that a large class of computationally 
predicted conserved miRNA target sites is under 
significant negative selection (9). Their results also 
implicate that SNPs located in miRNA binding sites 
are likely to affect the expression of the miRNA target 
and might contribute to the susceptibility of humans to 
complex diseases. Recent advances in genetic studies 
have systematically identified and analyzed human 
polymorphisms in miRNAs and/or miRNA target sites 
(8,10). However, most of them focus on SNPs in target 
sites and their effects or disease-related miRNAs, 
while few of them mentioned the understanding of the 
synergistic regulation of miRNAs and their potential 
targeted SNPs cooperative effects contributing to 
disease. With the rapid accumulation of disease-related 
miRNAs, it is increasingly needed to uncover their 
functional relationships contributing to diseases at a 
system biology level. 
 Different from those constructed miRNA-miRNA 
networks depending on co-occurrence in 3'-UTRs of the 
same miRNA target genes (11), or using the correlations 
between the gene silencing scores of individual 
miRNAs or the combinatorial effects of co-expressed 
miRNAs in the modulation of a given pathway (12), or 
using the functional information and protein interaction 
data of predicted miRNA targets (13), we attempted 
to construct a miRNA-miRNA synergistic network 
related to coronary artery disease (CAD) by performing 
a genome-wide scan for SNPs in human miRNA 3'-
UTR target sites and computed SNP cooperative effects 
contributing to disease based on the potential miRNA-
SNPs interactions reported recently (7). In this process, 
miRNA expression profiling data and genome-wide SNP 
genotype data were integrated. As a result, predicted a 
miRNA-miRNA network was validated by significantly 
high interaction effects of CAD-related miRNAs. 
Our method can help to understand miRNA function 
and CAD disease, as well as to explore novel miRNA 
biomarkers and infer novel mechanisms connecting 
miRNAs to functions.

2. Materials and Methods

2.1. Data Source

2.1.1. CAD related genome-wide SNP genotype data

For GWAS data, we selected the genome-wide 

Wellcome Trust Case Control Consortium (WTCCC) 
data (http://www.wtccc.org.uk), which examined about 
2000 individuals for seven major diseases, using a 
shared set of about 3000 controls. In the current study, 
only CAD data was used. As a part of the WTCCC, 
482, 428 genome-wide SNPs were genotyped. The 
Standard WTCCC thresholds were applied for SNP 
quality control (genotype call rate > 95%, Hardy 
Weinberg equilibrium p-value > 5 × 10–7, Minor Allele 
Frequency (MAF) > 0.01). In this analysis, we took 
those SNPs with p < 0.01 in single association tests 
as potential risk SNPs in consideration of relaxing the 
cutoff which can avoid losing some true positive loci. 
In fact, we have found some significant CAD-related 
risk SNPs confirmed by experiment, such as rs4299376 
(p = 0.004), rs2505083 (p = 0.008) and rs46522 (p = 
0.008) (14), have become non-risk SNPs in GWAS 
according to the significant level of 0.0001 in previous 
studies (15).

2.1.2. CAD-related miRNA expression profiling data

For miRNA expression profiling data, we selected 
the platform evaluated by Illumina (Illumina Inc, 
San Diego, CA, USA) Human v2 miRNA expression 
beadchip (GEO association: GPL8179, http://www.
ncbi.nlm.nih.gov/geo/). The dataset GSE28858 includes 
1,146 miRNA expression values of 12 CAD patients 
and 12 controls. We downloaded miRNA expression 
values after log2 transformation.

2.2. Scan of 3'-UTR SNPs from the WTCCC CAD-related 
GWAS data

In this analysis, we used an update SNPnexus (http://
www.snpnexus.org) tool to perform the scan of 3'-UTR 
SNPs from the WTCCC CAD-related GWAS data. 
SNPnexus database provides annotation and genomic 
location on clones, contigs or chromosomes for both 
novel and public SNPs by incorporating a broader 
range of variations such as insertions/deletions block 
substitutions, and region-based analysis. In addition, we 
referred to the enhanced functional annotation involved 
in the update SNPnexus tool (16).

2.3. Identification of differentially expressed miRNAs

In this analysis, we applied Significance Analysis of 
Microarrays (SAM) method (http://otl.stanford.edu) 
to extract the statistical significance miRNAs between 
CAD and control groups. SAM can identify statistically 
significant miRNAs by carrying out miRNA specific 
t-tests and computing a statistic for each miRNA, 
which measures the strength of the relationship between 
miRNA expression and the phenotype (17). In this 
method, repeated permutations of the data are used to 
determine if the expression of any miRNA is significant 
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for multiple testing may result in a decrease in power 
to detect weaker associations of susceptibility SNPs. 
On the other hand, when considering interaction effect 
in the logistic regression analysis, such as gene-gene 
interaction or gene-environment interaction, p-values 
can be relaxed (19). 
 For two given miRNA-SNP pairs: miRNA1-SNP1 
and miRNA2-SNP2, if SNP1 interacted with SNP2 (p12 < 
0.05), we defined an interaction score of miRNA1 and 
miRNA2:

                  S12 = E1×E2×(-log(p12))                        (2)

where E1 and E2 are binding energy changes of 
miRNA1-SNP1 and miRNA2-SNP2, respectively. The 
greater S score means stronger interaction between two 
miRNAs. After assembling all miRNA pairs identified 
above, we generated the miRNA-miRNA synergistic 
network related to CAD disease. A node represents 
a miRNA, and two nodes are connected if the 
corresponding miRNA pair has an interaction action. 
Figure 1 shows the workflow to construct the miRNA-
miRNA synergistic network.

2.6. Extraction of miRNA clusters and Randomization 
tests

To validate the constructed miRNA-miRNA network, 
we extracted miRNA clusters to evaluate their co-
expression or combined strength. Note that highly 
connected nodes (hubs) characterized by those nodes 
with high degrees are often considered as important 
targets of networks (20), and sub-networks implicated 
by hubs have also been shown to be highly conserved 
in maintaining the housekeeping biological functions 
of cells (15). We therefore examined all of the miRNA 
clusters implicated by hub miRNAs to see their 
characteristics. Considering hubs might be different in 
terms of the network size, we did not directly define 
hubs as nodes with more than five interactions in the 
network like Taylor's study (21). Instead, we assumed 
the degree of nodes followed a Poisson distribution in a 
random network (22). To determine whether a miRNA 
is a hub miRNA, the following formula was used to 
compute its probability of degree ≥ t (23):

where n is the number of miRNAs and m is the number 
of interacting miRNA-pairs in the miRNA-miRNA 
network. In our analysis, a miRNA was considered as a 
hub when its P value was smaller than the probability 
of this rare event. This filtering criteria was supported 
by some previous studies (15,24). 
 Then, we extracted miRNA clusters implicated by 
hubs, which include all miRNAs linked to the hubs 
directly. We computed the average S scores for each of 

related to the phenotype. In this analysis, we used the 
criterion of p < 0.05 and False Discovery Rates (FDR) < 0.1 
to determine miRNAs variously differentially expressed.

2.4. Identification of differentially expressed miRNA and 
3’-UTR SNP pairs

In this analysis, consider that the gain of a functional 
miRNA target site will repress protein expression and 
affect physiological function and clinical phenotype, 
and thus we used miRNA and 3'-UTR SNP target 
gain predicted by the MiRNASNP tool (http:// www.
bioguo.org/miRNASNP) (7) to extract differentially 
expressed miRNA and 3'-UTR SNP pairs. MiRNASNP 
tool combined results of two popular tools, TargetScan 
(http://www.TargetScan.org/) and miRanda (http://
www.microrna.org), which are regularly updated and 
considered to have relatively good performance. In this 
tool, the UTR sequences were divided into wild type 
and corresponding mutant type, and miRNA and 3'-UTR 
SNP target gain was defined as follows: 

          Gain = (ST ∩ SM) – (WT     WM),               (1)

where ST are the target genes of SNP-miRNAs 
processed by TargetScan and SM are the target genes 
of SNP-miRNAs processed by miRanda; whereas WT 
are the target genes of wild-type miRNAs processed by 
TargetScan and WM are the target genes of wild-type 
miRNAs processed by miRanda (7). That means, if one 
miRNA-SNP pair was predicted in both ST and SM, 
but neither in WT nor WM, this pair is called miRNA 
and 3'-UTR SNP target gain. For each of miRNA-SNP 
pair, minimum hybridization energy of the miRNA–
target interaction is calculated using RNAhybrid (http://
bibiserv.techfak.uni-bielefeld.de/rnahybrid) (7,18). 
In this analysis, we used the binding energy changes 
between wild-type miRNA/target and SNP-miRNA/
target to evaluate the interaction strength of each 
miRNA-SNP pair. More energy change means sharper 
interaction.

2.5. Construction of miRNA-miRNA synergistic network

Here, for those 3'-UTR SNPs regulated by differentially 
expressed miRNAs, we used logistic regression 
methods based on PLINK software (http://pngu.
mgh.harvard.edu/~purcell/plink/) to detect SNP-SNP 
cooperation effects contributing to coronary artery 
disease. We used 0.05 as the cutoff of significant 
interaction effect between two SNPs, and the multiple 
test corrections were not performed to avoid the loss. 
On one hand, we consider that Bonferroni correction 
assumes that the tests are independent, yet many 
interaction tests are highly correlated. Multiple test 
corrections might be overly conservative due to high 
correlations among the interaction tests, and adjusting 
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the miRNA clusters. To evaluate the significance of co-
expression or combined strength of miRNAs involved 
in these clusters, we performed the randomization tests. 
For each miRNA cluster, we randomly selected the 
same number of miRNA pairs from all SNP (miRNA)-
SNP (miRNA) pairs, and calculated the corresponding 
average S score. This procedure was repeated 1,000 
times, and the significant P-value is the fraction of the 
average S scores under random conditions, which is 
greater than the value in the real condition.

3. Results

3.1. Identification of differentially expressed miRNAs

According to the criterion of p < 0.05 and FDR < 0.1, we 
applied the SAM method to identify 398 significantly 
differentially expressed miRNAs. Where, 6 out of 
the 12 previously identified CAD-related miRNAs in 

miRNA disease association database-HMDD (Human 
MicroRNA Disease Database, http://202.38.126.151/
hmdd/tools/hmdd2.html) (25) exhibited statistically 
significant differential expression between cases and 
controls, and they were miR-126 (p = 0.0007), miR-
130a (p = 0.0278), miR-21 (p = 0.0005), miR-222 (p 
= 0.0181), miR-340 (p = 6.11E-05) and miR-624 (p = 
0.0012). A growing amount of evidence has shown their 
association with CAD. For example, a recent report 
suggested that vascular miR-126 is consumed during 
transcoronary passage, and the differential regulation 
of circulating miRs during the transcoronary passage 
might provide important insights to exploit their role as 
cardiac biomarkers (26). We listed those significantly 
up-regulated (Fold_change > 1.5) or down-regulated 
(Fold_change < 1/1.5) differentially expressed miRNAs 
in Table S1 (http://www.biosciencetrends.com/docindex.
php?year=2014&kanno=5).

3.2. Identification of differentially expressed miRNA and 
3'-UTR SNP pairs

Using the SNPnexus tool, we performed a scan of 3'-
UTR SNPs from the WTCCC CAD-related GWAS 
data, and 3,521 3'-UTR SNPs were identified. Among 
these 3'-UTR SNPs, only 43 (1.2%) were significant 
(p < 0.01). Then, we used miRNA and 3'-UTR SNP 
target gain predicted by the MiRNASNP tool to extract 
126 differentially expressed miRNA and 3'-UTR SNP 
pairs. Among these miRNA and 3'-UTR SNP pairs, the 
average of binding energy changes caused by SNPs in 
3'-UTR was 12.32 kcal/mol, where the miR-770-5p 
and rs9991 pair was up to 36.3 kcal/mol, suggesting a 
greater affect of the differentially expressed miRNA-
target SNP binding.

3.3. Construction of miRNA-miRNA synergistic network

In this analysis, we used logistic regression methods 
based on PLINK software to detect  SNP-SNP 
cooperative effects contributing to coronary artery 
disease. As a result, 7,875 SNP-pairs arose from 126 
3'-UTR SNPs targeted by differentially expressed 
miRNAs. According to our criterion of significant 
interaction, 281 SNP-SNP pairs were selected. While, 
one pair of SNPs: rs175634 and rs1043515 showed 
the most significant interaction (p = 0.000113). There 
are a certain number of SNPs showing interaction with 
multiple other SNPs. For example, SNP rs10802805 
interacts with another 10 SNPs, such as rs2112812 (p = 
0.0017), rs9537 (p = 0.0083), rs6052935 (p = 0.0236) 
and so on. 
 For two given miRNA-SNP pairs: miRNA1-SNP1 

and miRNA2-SNP2, and the corresponding interaction 
effect of SNP1 and SNP2, we computed the interaction 
score of miRNA1 and miRNA2 using the S measure 
as defined in the Methods section. For overlapped 

Figure 1. The workflow to construct the miRNA-miRNA 
network. The process involves three main steps. First, we 
identified differentially expressed miRNAs using CAD-related 
miRNA expression profiling data, and performed a scan of 
3'-UTR SNPs from the WTCCC CAD-related genome-wide 
SNP genotype data. Second, we used the MiRNASNP tool 
to extract differentially expressed miRNA and 3'-UTR SNP 
pairs and their corresponding binding energy changes. Finally, 
we performed logistic regression to detect the significant 
interaction of 3'-UTR target SNPs of differentially expressed 
miRNAs, and then identified miRNA pairs based on the 
corresponding SNP-pairs. After assembling all miRNA pairs 
identified, we constructed the miRNA-miRNA synergistic 
network related to CAD disease.
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miRNA pairs, we took the maximum S scores as their 
interaction strength. After assembling all miRNA pairs, 
we can see that interacting miRNAs formed a miRNA-
miRNA synergistic network related to CAD disease 
(See Figure 2A). For the whole network, the maximum 
interaction strength was seen from miR-665 and miR-
132 (S = 1355.46), followed by miR-140-3p and miR-
198 (S = 1319.96). The average S score was 188.68. 
To determine if this network is a small-world network, 
we constructed 1,000 random small-world networks 
using Cytoscape software (http://www.cytoscape.org) 
(27), and computed the average clustering coefficient 
and average diameter. We found that the network had 
a short diameter of 2.983, which is similar to that of 
a random small world network (2.987 ± 0.091, p = 
0.144). In addition, we calculated the average clustering 
coefficient of the network, and obtained an average 
clustering coefficient of 0.322 which was much higher 
than for random networks (0.166 ± 0.014, p < 0.001) 
and approved the dense local neighborhoods of the 
network. This result suggests that immediate neighbors 
of a miRNA tend to be synergistic and contribute to 
disease (28). 
 With the topological characteristic analysis of this 
constructed miRNA-miRNA network, we can see 
that there were more poorly connected nodes than 
hubs. More than 60% of the nodes had degrees of 
≤ 10. In other words, the degree shows a scale-free 
distribution, which means that most miRNAs only 

have a few connected miRNAs, but some miRNAs 
show an outstanding degree property. For example, 
miR-663b showed the highest degree (degree = 30, p 
< 10-5), suggesting it can connect to a greater number 
of miRNAs than others. This is supported by newly 
published research in which they found miR-663b 
showed the highest sensitivity and specificity for 
discrimination of acute myocardial infarction cases from 
health controls of miRNA expression in peripheral total 
blood samples (29). In addition, miR-144 also showed 
a greater degree (degree = 18, p = 0.0187). A recent 
study has reported that ectopic expression of miR-144 
augmented cardiomyocyte survival, which was further 
improved by over-expression of miR-144, compared 
to control cells in response to simulated ischemia (30). 
This result support our constructed networks not only 
shed light on the relationships between miRNAs, but 
also give insight into those hub miRNAs which are 
more evolutionarily conserved than non-hub miRNAs. 
It also can be explained that hub miRNAs are subject 
to selection pressure and constraints, due to their 
involvements in many biological processes and their 
multiple interacting miRNA partners.

3.4. The validation of miRNA-miRNA network using 
miRNA expression value

It is possible that miRNAs with similar functions 
tend to have similar expression profiles. To further 

Figure 2. The constructed miRNA-miRNA synergistic network related to CAD. (A) CAD-related miRNA-miRNA network. 
Each node represents a miRNA, and two nodes are connected if the corresponding miRNA pair has an interaction. (B) A special 
example: miR-663b related miRNA cluster.
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validate and evaluate the accuracy of our constructed 
miRNA-miRNA network and investigate the expression 
pattern of connecting miRNA-pairs, we analyzed 
their expression similarity using Pearson's correlation 
coefficients. As a result, we found that approximately 
40% of miRNA pairs have positive or negative co-
expression patterns (p < 0.05). In addition, we used 
logistic regression models based on miRNA expression 
values to analyze the cooperative effects of miRNA-
pairs. Interestingly, more than half of miRNA-pairs 
(52.3%) are proved to be significant (p < 0.05). 
Specially, when investigating those miRNA-pairs 
including miR-663b; approximately 80% of them are 
significant (See Table 1 and Figure 2B). This result 
further supports that miR-663b is an important CAD 
association miRNA, which is more likely to interact 
with other miRNAs contributing to disease.

3.5. Randomization test

To evaluate the co-expression or combined strength 
of the miRNA groups involved in the network, we 
extracted miRNA clusters implicated by hubs from the 
constructed network. In our analysis, a hub miRNA 
with ≥ 17 partners in a random network (p < 0.05) was 
considered a rare event under the null hypothesis that n 
miRNAs were connected randomly. According to this 

criterion, when 6 hub miRNAs were extracted, they 
were miR-600 (degree = 17, p = 0.034), miR-548b-5p 
(degree = 17, p = 0.034), miR-1245 (degree = 19, p = 
0.0099), miR-144 (degree = 18, p = 0.0187), miR-1248 
(degree = 20, p = 0.005) and miR-663b (degree = 30, 
p < 10-5). For each miRNA cluster, we calculated the 
average S score to its 1000 random matched miRNA 
clusters. For miRNA clusters implicated by hubs miR-
600, miR-548b-5p, miR-1245, miR-144, miR-1248, 
and miR-663b, each matched set consisted of 17, 17, 
19, 18, 20, and 30 miRNAs randomly selected from 
7,875 SNP (miRNA)-SNP(miRNA) pairs. According 
to the empirical distribution of S scores, we obtained 
a threshold value to determine the significance of 
each miRNA cluster. We found that excluding the 
miRNA cluster implicated by miR-548b-5p (S = 
27.04, p = 0.805), other miRNA clusters implicated 
by hubs all showed outstanding S scores compared to 
random miRNA clusters: miR-600 (S = 138.48, p < 
0.001), miR-1245 (S = 175.24, p < 0.001), miR-144 
(S = 289.60, p < 0.001), miR-1248 (S = 206.52, p < 
0.001) and miR-663b (S = 75.97, p = 0.038). In these 
identified miRNA clusters, some miRNAs have been 
proved to be associated with CAD. For example, in the 
miR-144 cluster, miR-545 has been found to show an 
up-regulation in premature CAD patients compared to 
controls in recent studies (31). In the miR-663b cluster, 

Table 1. miR-663b related miRNA cluster

miRNA1 (SNP1)

miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs175634)
miR-663b (rs6052935)
miR-663b (rs175634)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs175634)
miR-663b (rs175634)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs175634)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)
miR-663b (rs6052935)

miRNA2 (SNP2)

miR-507 (rs4312485)
miR-548a-3p (rs6654)
miR-1205 (rs165345)
miR-1236 (rs10894557)
miR-1245 (rs1043515)
miR-1248 (rs12218073)
miR-1258 (rs198413)
miR-1284 (rs1052912)
miR-1299 (rs10260499)
miR-144 (rs11543230)
miR-151-3p (rs12174237)
miR-24 (rs12214037)
miR-34c-3p (rs2810)
miR-362-5p (rs10521099)
miR-374a (rs3811610)
miR-455-5p (rs10933164)
miR-505 (rs10864675)
miR-509-5p (rs1064395)
miR-513a-5p (rs11153074)
miR-520g (rs4151045)
miR-548b-5p (rs3737933)
miR-568 (rs8035733)
miR-576-5p (rs435382)
miR-578 (rs10165660)
miR-600 (rs1045291)
miR-641 (rs6880907)
miR-648 (rs8713)
miR-651 (rs10516139)
miR-665 (rs16854011)
miR-922 (rs7677472)

Logistic p-values based on miRNA expression values

0.034
0.016
0.103
0.012
0.866
0.040
0.024
0.301
0.019
0.514
0.035
0.047
0.033
0.040
0.302
0.028
0.040
0.043
0.026
0.021
0.039
0.012
0.026
0.022
0.030
0.376
0.033
0.026
0.919
0.047

Note: P12 indicates the signifi cant interaction p-value of SNP1 and SNP2.

Score = E1 × E2 × P12

    0.708
  99.10
  10.21
  27.12
    3.63
188.91
    2.53
    1.13
  25.25
149.46
130.08
    1.37
  10.04
145.19
    0.70
    3.16
154.42
    6.58
231.30
  20.04
  48.11
  15.66
    2.73
141.50
191.84
    4.62
182.80
  10.28
279.78
201.19
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an increased level of miR-24 was found in idiopathic 
end-stage failing human hearts by northern blot 
analysis of the hypertrophy-regulated miRNAs (32). 
Moreover, when we computed the average correlation 
coefficients using miRNA expression values for 
these five miRNA clusters, the average correlation 
coefficients were all approximately 0.5 (See Table 
2). This result suggests the identified CAD-related 
miRNA clusters have greater average S scores and 
greater relevance than other miRNA clusters expected 
by chance (See Figure 3).

3.5. Validation of classification performances of five 
identified miRNA clusters using miRNA expression 
values

To validate whether the identified miRNA clusters have 
better classification performance, we applied Random 
Forests (RF) method (33) to miRNA expression 
profiling data in which those miRNAs involved in 
miRNA clusters are taken as predictor variables 
to classify samples. RF is an ensemble classifier 
that consists of many decision trees and each tree 
depends on the values of a random vector sampled 
independently. In this analysis, we used 5-fold cross 
validation to assess the classification accuracy rate. All 
samples were divided into five sets and in each analysis 
one set is considered as testing data, whereas the 
others are training data. For Random Forests program, 
5,000 trees were constructed. As a result, accurate 
classification performances were obtained for all 
miRNA clusters, and the sensitivity and specificity were 

Figure 3. The distribution of average S scores for five miRNA clusters implicated by hubs. The random background 
distribution of average S scores for miRNA clusters implicated by miR-663b (A), miR-600 (B), miR-1245 (C), miR-1248 (D) and 
miR-144 (E) are shown in purple colors. The red lines indicate the real average S scores of the corresponding miRNA clusters.

Table 2. The characteristics of CAD related miRNA clusters

miRNA clusters implicated by hubs

miR-600
miR-1245
miR-144
miR-1248
miR-663b

Degree of hub

17
19
18
20
30

S (Scutoff)

138.48 (105.50)
175.24 (84.40)
289.60 (106.80)
206.52 (81.80)
  75.97 (73.50)

Note: * Signifi cant p-value is the fraction of the average S scores in random conditions, which is greater than the value in the real condition.

*p-value

 < 0.001
 < 0.001
 < 0.001
 < 0.001
    0.038

Average correlation coefficient

0.512
0.546
0.479
0.464
0.489
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all more than 90%. The sensitivity, specificity, positive 
predictive value, negative predictive value, and area 
under the ROC curve (AUC) for five miRNA clusters 
used to detect CAD with Random Forest classifier are 
shown in Table 3. 
 Note that it is often interesting to know which 
miRNAs are important in classification in Random 
Forests program. There are two measures of importance 
in RF program, the mean decrease in accuracy and the 
mean decrease Gini index (MDG) (33). In this analysis, 
we used MDG to measure the risk of miRNAs in each 
miRNA cluster. Greater MDG will indicate that the 
degree of impurity arising from a category could be 
reduced furthest by this miRNA, and thus suggests an 
important miRNA. Interestingly, miR-1236 ranked first 
for all miRNA clusters (See Table 3). Recent evidence 
showed that miR-1236 may function as a negative 
regulator of vascular endothelial growth factor receptor 
(VEGFR)-3 (34).

3.7. Comparison with MISIM tool

We also attempted to validate our results to see whether 
miRNAs involved in miRNA clusters have potential 
functional similarity. Currently, the functional similarities 
of miRNAs are often predicted by indirectly inferring 
similarities of their corresponding target genes. These 
prediction methods include Gene Ontology (GO) or 
pathway enrichment analysis for miRNA-targeted gene 
sets (35). However, these methods are not applicable for 
miRNA genes because the function of most miRNAs 
remains unknown and no such function annotation 
database is available. Therefore, in this analysis, we used 
a recent developed tool, MISIM (http://210.73.221.6/), 
which is used to measure miRNA functional similarity 
based on human miRNA-disease association data and 
structures of the corresponding disease relationships 
(13). We used 0.7 as the MISIM threshold to determine 
whether two miRNAs have a link. In other words, those 
miRNA pairs with a MISIM coefficient greater than 
or equal to 0.7 were selected. The results of MISIM 
showed that miR-106a, miR-144, miR-520g, miR-
24, miR-132, miR-505, miR-507 and miR-600 had 
a similar function (See Figure 4). Indeed, recently 
published data have shown some of these miRNAs are 

associated with CAD-related diseases, such as miR-
132, miR-144, miR-106a and miR-24. For example, 
Katare et al. investigated the therapeutic activity and 
mechanistic targets of saphenous vein-derived pericyte 
progenitor cells (SVPs) in a mouse myocardial infarction 
model, and found SVP transplantation produced long-
term improvement of cardiac function through a novel 
paracrine mechanism involving secretion of miR-132 
and inhibition of its target genes (36). In addition, some 
miRNAs such as miR-24, were found to be up-regulated 
in human heart failure patients and transfection of 
neonatal cardiomyocytes with these miRNAs resulted 
in significant cardiomyocyte hypertrophy (37). These 
results suggest miRNA clusters identified by our method 
might have a potential functional aggregated trend 
related to CAD disease.

Figure 4. The evaluation of miRNA clusters based on 
functional similarity using MISIM tool. In graphical 
illustration, each green circle indicates a miRNA and each red 
line connects two miRNAs with similar function.

Table 3. Sensitivity, specifi city, positive predictive value, negative predictive value, and area under ROC curve (AUC) for 
miRNA clusters used to detect CAD with Random Forest classifi er

miRNA clusters
implicated by hubs

miR-600
miR-1245
miR-144
miR-1248
miR-663b

Sensitivity (%)

  92.3(64.0-99.8)
  92.3(64.0-99.8)
100.0(73.5-100.0)
100.0(71.5-100.0)
100.0(73.5-100.0)

Specificity (%)

100.0(71.5-100.0)
  90.9(58.7-99.8)
  91.7(61.5-99.8)
  92.3(64.0-99.8)
  91.7(61.5-99.8)

Area under ROC 
curve (AUC) (%)

  95.8(86.4-105.3)
  91.6(78.5-104.8)
  96.2(87.4-104.9)
  95.8(86.4-105.3)
  96.2(87.4-104.9)

Positive predictive
value (%)

100.0(73.5-100.0)
  92.3(64.0-99.8)
  92.3(64.0-99.8)
  91.7(61.5-99.8)
  92.3(64.0-99.8)

Negative predictive
value (%)

  91.7(61.5-99.8)
  90.9(58.7-99.8)
100.0(71.5-100.0)
100.0(73.5-100.0)
100.0(71.5-100.0)

miRNA with the
maximal MDG

miR-1236
miR-1236
miR-1236
miR-1236
miR-1236

MDG

2.858
2.314
2.864
2.237
2.062

The Prediction Property (95% Confidence Interval)



www.biosciencetrends.com

BioScience Trends. 2014; 8(6):297-307.

4. Discussion

Some recent studies have implicated that SNPs 
located at miRNA binding sites are likely to affect the 
expression of the miRNA target and might contribute to 
the susceptibility of humans to common diseases (7,38). 
In this paper, using the expression profiles of miRNAs 
and genome-wide SNP genotype data, we constructed 
a miRNA-miRNA synergistic network related to CAD 
by performing a genome-wide scan for SNPs in human 
miRNA 3'-UTR target sites and computed potential 
SNP cooperative effects contributing to disease based 
on the potential miRNA-SNPs interactions. Our 
method has effectively identified 5 miRNA clusters 
related to CAD, and a certain proportion of miRNAs 
identified have been reported to have association with 
coronary artery disease. For example, a recent study 
showed that loss of the miR-144 cluster limits ischemic 
preconditioning cardioprotection by up-regulating Rac-
1-mediated oxidative stress signaling (39). Furthermore, 
some novel associations between miRNAs and CAD 
discovered recently have been predicted by our method, 
such as miR-663b.
 It is worthy to note that the origin of our constructed 
miRNA-miRNA network is based on the genome-wide 
SNP-SNP interaction. In practice, when testing millions 
of SNP-pairs for interaction, novel statistic methods are 
required for getting high power, and a large sample size 
is required for estimating logistic regression parameters 
to avoid sparseness problems for modeling interaction 
effects. Fortunately, in our study, only 126 3'-UTR 
SNPs of approximately 5, 000 samples came into the 
interaction analysis, and therefore the "fast-epistasis" 
involved in PLINK could also perform well. Certainly, 
we have to point out that the absence of multiple testing 
corrections and the replication of interaction analysis 
might cause some false positive results. Therefore, 
further validation using other individual studies will be 
performed in the future.
 Note that only 43 3'-UTR SNPs (1.2%) were 
significant (p < 0.01), which indicates that most SNPs 
involved in significant interactions have no marginal 
association. This result is consistent with those reported 
by Wu et al. (40), in which they found that 75% of 
interacting SNPs with p-values (for testing marginal 
association) larger than 0.2 and 44% of interacting 
SNPs with p-values (for testing marginal association) 
larger than 0.5. This strongly suggested that most 
significant SNP interactions have arisen from those 
SNPs with weak marginal association. However, an 
interesting observation was noted that the greatest 
binding energy changes was presented in miR-770-5p 
an rs9991 pair (36.3 kcal/mol), while miR-770-5p (p = 
0.0267) and rs9991 (p = 0.0043) were all significantly 
associated with CAD. Although few matched data in 
this study can't prove the relevance between the binding 
energy changes and the significance of miRNAs or 

SNPs, this phenomenon suggests that those significant 
miRNAs or their corresponding targets should also be 
focused on when considering their interaction effects 
contributing to complex disease. Moreover, among 
126 3'-UTR SNPs used in this analysis, 89 SNPs 
(70.6%) have relatively high MAF (MAF ≥ 0.10). 
Excluding 3 SNPs located in chromosome 18, 20, and 
21 respectively, the average MAFs for the other 19 
chromosomes were all greater than 0.14. Specially, 
SNP rs9991 which is significantly associated with CAD 
also has a relatively high MAF (MAF = 0.3115). This 
result agreed with a recent study in which Gong et al. 
demonstrated that those SNPs with a high population 
MAF, or high population frequency difference or 
undergoing positive selection pressure might be 
important candidates for population phenotype research 
and complex trait studies (7). Therefore, those SNP-
associated miRNA target sites may be worthwhile to 
focus on in further experiments.
 Furthermore, it should be pointed out when we 
investigated the relevance between S scores and the 
expression similarity for each connecting miRNA-pair 
involved in the constructed miRNA-miRNA network, 
we found there was no correlation between them (p 
= 0.382). This phenomenon also exists for identified 
miRNA clusters, such as miR-663b (p = 0.920) and 
miR-600 (p = 0.963). On one hand, this might be 
caused by the greater range of S scores (0.04-1355.46) 
due to the increased binding energy changes of miRNA-
SNP pairs, or on the other hand, integration data might 
cause some potential errors due to different data types 
which contain different kinds of information. Moreover, 
we can see that some functionally similar miRNA pairs 
neither have high expression similarity nor belong to 
the same family or cluster. 
 Currently, although advanced laboratory instruments 
and computing systems developed to decipher the 
structure and function of genes, proteins, miRNAs and 
other substances in the human body, the limitations and 
the complexity of biomedical problems causes natural 
obstacles in understanding the etiology of complex 
diseases. Therefore, bioinformatics and computational 
data face a great challenge in discovering new 
biomarkers which can be used to detect, prevent 
and cure complex diseases by performing genomic 
data analysis. Fortunately, various high-throughput 
approaches such as genome sequencing technology, 
microarray technology and proteomic characterization 
of proteins and complexes have allowed us to gather 
vast amounts of data to construct cellular networks. Our 
future work will be enhanced by integrating more data 
types, such as miRNA expression profiling data, gene 
expression profiling data, protein-protein interaction 
data, disease data, genotype data and so on. Specially, 
we know that some novel findings obtained by 
bioinformatics analysis may not be the facts and need to 
be validated using experiment technologies. Therefore, 
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experiment validation is important and will further help 
confirm the identified biomarkers. In the past, we have 
used qRT-PCR, Western blots and luciferase assays to 
validate some breast cancer subtype-related miRNAs 
identified by silico analysis, and the report of this work 
is in press. In the future, we will use experimental 
technologies to further confirm these potential findings. 
We expect our study can provide more clues for other 
researchers to perform experiments and predictions for 
CAD-related biomarkers. 
 In conclusion, we have presented a framework to 
construct a miRNA-miRNA network using miRNA 
expression profiling data and genome-wide SNP 
genotype data. The network topological analysis 
confirmed some novel CAD-related miRNAs identified 
recently by experiment. Our method might help to 
undertand miRNA function and CAD disease, as well 
as explore the novel mechanisms connecting miRNAs 
and function.
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