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1. Introduction

There is no doubt that prodrugs play an important role 
in current drug delivery and drug discovery (1-3). Our 
lab developed a coumarin-based prodrug system for 
preparing esterase-sensitive prodrugs of amines and 
peptides (4). This system has a cis-double bond which 
could facilitate the lactonization when an acyl group 
(R) is hydrolyzed by esterase (Scheme 1). To date, it 
has been used for the preparations of cyclic prodrugs 
of opioid peptides (5-8), such as DADLE (9-11) and 
DADLE analogs (12), and peptidomimetics, such 
as an RGD (Arg-Gly-Asp) analog MK-383 (13,14). 
Moreover, this system was also applied in the design 
of non-peptide prodrugs such as meptazinol, and the 
prodrug of meptazinol has shown a 4-fold increase in 

oral bioavailability (15). The advantage of the coumarin 
system lies in the released final product, coumarin, 
which is known to be non-toxic in extensive studies. In 
addition, the release rate of the coumarin-based prodrug 
system can be further manipulated by the introduction 
of additional substituents on the aromatic ring or the 
acyl group. In our previous studies, a series of coumarin 
derivatives with different substitutions of R and R1-R6 
were synthesized and evaluated for release kinetics 
(Table 1) (3,16-18). These release kinetic studies only 
obtained overall pseudo-first-order rate constants 
because the complex process involves an enzymatic 
reaction and multi-step chemical reactions (Scheme 1). 
Our preliminary results suggest that the acyl group (R) 
has a minor influence on the overall half-lives, but the 
substituents on the phenyl ring (R1-R4) and amine part 
(R5 and R6) have major and complicated effects which 
include an electronic effect, steric effect and so on. In 
order to clearly illustrate these issues, computer-based 
tools are needed to further analyze the structural effect 
on the release kinetics.
 Quantitative structure-property relationship 
(QSPR) studies have been successfully used for the 
prediction of physicochemical properties of chemical 
compounds based on their structures (19-24). The 
biological counterpart of such studies, quantitative 
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structure-activity relationships (QSAR), has also 
been extensively used with great success (25-28). 
So far, many efforts have successfully been made to 
investigate the spectral properties by using this kind of 
QSAR/QSPR approach (29-31). However, a common 
problem in QSAR/QSPR modeling is choosing a proper 
description of the variance between the individual 
molecular structures within a set of compounds. In our 
case, some commercially available 3D-QSAR methods, 
such as CoMFA and CoMSIA, cannot be used in such 
a complex system because these approaches mainly 
focus on interaction between macromolecules (receptors, 

enzymes) and substrates, while the kinetics of the 
coumarin-based prodrug system is more complicated and 
consists of not only the enzyme hydrolysis interaction 
but also intramolecular lactonization steps. The latter 
lactonization step is also significantly different from 
molecular recognition in biological systems. Currently, 
quantum-mechanical descriptors calculated using density 
functional theory (DFT) have been successfully used 
in the modeling of reaction-related procedures, such as 
free-radical copolymerization (32), bond dissociation 
(33), and olefin metathesis (34). Therefore, the structure 
parameters of the coumarin-based prodrug, especially 
the parameters related to the lactonization step should be 
taken into account due to the chemical reactivity of bond 
making and bond breaking. In this paper, we will use 
the DFT-based QSPR computational tool and statistics 
method to study the relationships between the coumarin-
based prodrug system and their kinetics. 

2. Materials and Methods

2.1. DFT calculations

Electronic structure calculations have been performed 
using the Gaussian 03 program (35) on URSA, a 
160-processor computer based on the Power5+ 
processor and IBM's P series architecture. The DFT 
method B3LYP (36,37) and the 6-31+G (d,p) basis set 
were used for all calculations, along with the PCM 
solvation model (38). The PCM solvation model is 
used in single-point energy calculations (PCM (sp)), 
and during the geometry optimizations and frequency 
calculations (PCM (opt)). All calculations using the 
PCM solvent model employ UAHF atomic radii when 
constructing the solvent cavity, as recommended in 
the Gaussian 03 user's reference when the "scfvac" 
keyword is used to obtain the free energy of solvation, 
as is the case in this study. All the geometries are fully 
optimized, and the character of the stationary points 
found is confirmed by a harmonic frequency calculation 
at the same theory level to ensure a minimum is located. 
Such a practice is also the same as we have done in past 
studies (39,40). The kinetic constants and all structure 
parameters related to enzyme hydrolysis interaction 
and intramolecular lactonization of each compound are 
listed in Table 2.
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Scheme 1. The illustration of a coumarin-based esterase-sensitive prodrug system and its derivatives.
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Tabel 1. The structure of coumarin derivatives

Compound

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
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H
H
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compounds). In the descriptor selection, variables with 
small variance (not significant at the 5% level) were 
then removed. The UFS procedure was then applied 
repeatedly using values of R2

max stepping from 0.1 to 
0.9 with an increment of 0.1, together with R2

max = 
0.99. The UFS calculation was performed on a Virtual 
Computational Chemistry Laboratory at http://www.
vcclab.org (43).

2.3. Polynomial neural network (PNN) simulation

The PNN algorithm is also known as an iterational 
algorithm of group methods of data handling (GMDH) 
(44). PNN provides a robust nonlinear polynomial 
regression identification for numerical data with 
unknown dependencies (45). Moreover it is insensible 
to outliers and irrelevant variables, and provides fast 
learning and numerical stability. PNN is a robust 

2.2. Rational selection of descriptors

After identification of a large number of descriptors, a 
rational descriptor selection was carried out to reduce 
the number of descriptors to an acceptable level 
containing no redundancy and a minimal amount of 
multicollinearity. In this selection, a novel descriptor 
reduction algorithm, unsupervised forward selection 
(UFS) (41), was employed to determine suitable 
descriptors. This method has been successfully used 
in our previousstudy for modeling the excitation 
wavelengths of boronic acids (42). UFS could select 
from a data matrix a maximal linearly independent 
set of columns with a minimal amount of multiple 
correlations, and therefore it was designed for use 
in the development of QSPR models, where the m 
by n data matrix contains the values of n variables 
(typically molecular properties) for m objects (typically 

Table 2. Structure parameters of coumarin derivatives based on DFT calculations

No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Y: logK (*104/s), represent the observed release kinetic value (kobs) of coumarin-based prodrugs; X1: ΔG(kcal/mol), X2: Total electrostatic energy 
(kcal/mol), X3: Cavitation energy (kcal/mol), X4: Dispersion energy (kcal/mol), X5: Repulsion energy (kcal), X6: Total non electrostatic energy 
(kcal/mol), X7: dipole in vacuo (Debye), X8: dipole in solution (Debye), X9: atomic Mulliken charge of atom C(1), X10: atomic Mulliken 
charge of O(1), X11: atomic Mulliken charge of C(2), X12: atomic Mulliken charge of C(3), X13: atomic Mulliken charge of C(4), X14: atomic 
Mulliken charge of C(5), X15: atomic Mulliken charge of C(6), X16: atomic Mulliken charge of N(7), X17: surface of added spheres. 

O H

ONR 5

R6

R 1

R 2

R 3

R4

(2 )

(3) (4 )

(5 )

(6 )

(1)

(7 )

    X1

−11.28
−11.24
−11.22
−11.23
  −7.67
−10.81
  −9.43
  −7.93
  −8.05
  −5.14
  −2.36
  −5.31
  −6.08
  −4.53
  −6.01
  −5.74
  −4.91
  −4.86
  −5.88
  −4.71
  −6.02
  −7.35
  −7.19
  −7.37
  −7.91
  −9.29
  −9.22

    X2

−18.06
−17.96
−17.95
−17.96
−14.42
−16.87
−16.58
−16.47
−14.61
−14.75
  −9.15
−15.71
−13.67
−14.87
−13.20
−14.95
−12.82
−14.60
−12.90
−15.71
−13.74
−16.52
−14.55
−16.51
−14.80
−18.43
−15.99

  X3

33.75
33.73
33.74
33.73
29.30
32.15
34.96
35.39
30.70
39.58
33.91
39.56
34.98
39.38
34.86
39.78
35.01
37.37
32.96
41.38
36.53
37.11
32.74
37.57
32.94
38.82
34.30

    X4

−34.77
−34.82
−34.81
−34.80
−28.13
−32.89
−34.19
−34.42
−30.47
−37.74
−33.60
−37.27
−34.07
−36.24
−34.23
−38.10
−33.49
−34.67
−32.24
−38.57
−35.67
−35.66
−31.84
−36.34
−32.78
−37.66
−34.25

 X5

7.80
7.80
7.80
7.81
5.56
6.81
6.38
7.57
6.33
7.77
6.47
8.10
6.69
7.20
6.56
7.53
6.39
7.04
6.29
8.19
6.85
7.72
6.47
7.92
6.73
7.98
6.72

   X6

  6.78
  6.72
  6.73
  6.74
  6.74
  6.07
  7.15
  8.54
  6.56
  9.61
  6.78
10.40
  7.60
10.34
  7.19
  9.22
  7.91
  9.74
  7.01
10.99
  7.71
  9.17
  7.37
  9.15
  6.89
  9.13
  6.77

X7

3.84
3.75
3.77
3.77
4.27
3.52
5.11
2.72
2.81
2.58
5.09
2.64
3.03
3.49
2.75
2.73
2.88
3.77
2.43
2.91
3.28
2.95
3.18
2.91
2.85
2.74
3.68

 X8

5.92
5.80
5.82
5.83
5.71
4.66
7.04
3.76
3.97
3.56
7.24
3.66
4.30
4.63
3.80
3.50
4.11
4.89
3.52
4.04
4.66
4.13
4.46
3.94
3.97
3.37
5.24

   X9

−0.353
−0.350
−0.353
−0.345
  0.088
−0.429
−0.267
−0.266
−0.153
  0.404
  0.002
  0.079
  0.232
  0.029
  0.187
−0.473
−0.954
  0.271
−0.193
−0.242
−0.112
−0.209
−0.170
−0.093
−0.031
−0.541
−0.133

  X10

−0.571
−0.571
−0.571
−0.570
−0.546
−0.529
−0.544
−0.564
−0.560
−0.504
−0.594
−0.521
−0.518
−0.493
−0.522
−0.565
−0.522
−0.515
−0.550
−0.512
−0.508
−0.569
−0.572
−0.565
−0.565
−0.571
−0.558

   X11

  0.263
  0.261
  0.261
  0.259
−0.164
  0.238
  0.056
  0.272
  0.198
  1.002
  1.191
  0.097
−0.280
−0.126
  0.878
  1.269
  0.970
  0.124
  0.943
−0.142
−0.091
  0.291
  0.264
  0.481
−0.144
  1.000
  0.109

  X12

−0.328
−0.330
−0.328
−0.329
−0.232
−0.356
−0.358
−0.411
−0.221
−0.767
−0.770
  0.226
  0.239
  0.543
  0.139
−1.240
−0.533
−0.050
−0.678
  0.512
  0.712
−0.558
−0.722
−0.024
  0.300
−0.515
−0.269

  X13

−0.148
−0.149
−0.154
−0.148
−0.122
−0.065
  0.066
−0.167
−0.291
  0.273
−0.124
−0.126
  0.305
−0.268
−0.767
  0.733
−0.022
−0.430
−0.237
  0.064
−0.084
  0.440
  0.461
−0.714
−0.415
−0.492
  0.243

  X14

−0.441
−0.434
−0.430
−0.431
−0.374
−0.397
−0.468
−0.192
−0.123
  0.064
  0.585
  0.348
  0.052
−0.079
  0.184
−0.653
  0.836
−0.006
−0.016
  0.680
  0.438
−0.375
−0.329
  0.120
  0.211
−0.018
−0.387

  X15

−0.707
−0.715
−0.723
−0.719
−0.033
−0.040
−0.224
−0.349
−0.375
−0.624
−0.375
−0.354
−0.366
−0.466
−0.469
−0.670
−0.449
−0.134
−0.447
−0.411
−0.434
−0.433
−0.410
−0.398
−0.478
−0.371
−0.473

  X16

−0.194
−0.191
−0.191
−0.191
−0.287
−0.329
−0.322
−0.067
−0.010
−0.036
−0.058
−0.070
−0.006
  0.005
  0.011
−0.037
−0.012
−0.039
  0.005
−0.051
−0.028
−0.061
−0.040
−0.060
  0.002
−0.072
−0.031

 X17

58.02
61.16
61.04
61.14
45.05
49.87
57.13
55.55
53.60
70.12
60.12
61.93
61.52
64.87
57.31
77.09
58.25
64.68
55.02
70.81
68.56
54.45
50.68
58.73
52.46
65.78
61.87

   Y

4.86 
4.81 
4.76 
4.76 
4.97 
4.36 
5.72 
4.55 
3.79 
5.15 
5.01 
5.26 
4.79 
5.56 
4.99 
5.14 
4.40
5.20 
4.58 
5.09 
4.40 
4.63 
3.76 
4.56 
3.72 
4.52 
3.76 
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method that can be used even in the presence of outliers 
in the training set and provides reliable results even for 
such difficult cases. PNN correlates input and target 
variables using (non) linear regression. The PNN 
simulation was performed on a Virtual Computational 
Chemistry Laboratory at http://www.vcclab.org (43).

3. Results

3.1. Selection of descriptors

In the first step, UFS was used to optimize the number 
of descriptors. After UFS, only 11 descriptors, X4, X6, 
X8, X9, X10, X11, X13, X14, X15, X16, and X17, 
were significantly correlated with Y at a 95% level 
among all descriptors. These 11 descriptors were then 
used as input for the development of the linear and 
nonlinear QSPR models of coumarin-based prodrug. 
The UFS selected descriptors, classes and references 
are shown in Table 1.

3.2. SMLR linear model

Based on these 11 descriptors after selection, 27 
compounds were then used to develop an optimal 
SMLR linear model. For the development of the 
linear model, leave-one-out (LOO) cross-validation 
statistical parameters were calculated to evaluate 
the model quality. Finally, a two-descriptor (X6 and 
X8) correlation model was obtained as represented 
in Table 3. The obtained squared correlation (r2) 
was 0.516 and the LOO squared correlation (q2) was 
0.427. The standard error (RMSE) was 0.38 and the 
F-value was 26.60. The estimated values based on 
the SMLR linear model are listed in Table 4. Figure 1 
depicts the estimated versus experimental values for all 
compounds.

3.3. PLS linear model

The linear model was also developed by PLS using 11 
selected descriptors. In this case a correlation model 
including six descriptors, X6, X8, X9, X10, X15, and 
X16, was obtained as shown in Table 3. The number of 
PLS components is 3. In this linear model, r2 was 0.663 
and q2 was 0.584. RMSE was 0.310 and the F-value 
was 49.68. The estimated results of the PLS model 
are shown in Table 4. The experimental and estimated 

values are shown in Figure 1.

3.4. PNN simulation of QSPR

In this case a nonlinear PNN model of QSPR 
was developed with the same selected subset of 6 
descriptors from those linear models. The estimated 
results of the PNN model are given in Table 4. Figure 
1 represents the estimated versus experimental values 
using the PNN nonlinear model.

3.5. Interpretation of descriptors

From Table 4, descriptors X3, X9, X15, and X16 
existed in the three PNN non-linear models. Descriptors 
X5 and X12 showed their influence on PNN model 
3 and model 1 respectively. Both the cavitation 
energy (X3) and repulsion energy (X5) belong to the 
components of free energy of solvation. Cavitation 
energy described the energy required to push aside the 
solvent molecules and then making a cavity to place a 

Table 3. Three neural network models and statistical data

Model

SMLR
PLS
PNN 1
PNN 2
PNN 3

Equation

Y = 0.286 × X6 + 0.312 × X8 + 0.984
Y = 0.164 × X6 + 0.121 × X8 + 0.423 × X9 + 7.088 × X10 + 0.066 × X15 - 1.269 × X16 + 6.697
Y = 5.31 × X14 × X16 + 0.381 × (X11)2 + 0.293 × X8 + 0.387 × X6
Y = 7.07 × (X16)2 - 0.762 × X11 × X15 + 0.375 × X6 + 0.313 × X8
Y = 4.31 × X14 × X16 - 0.667 × X11 × X15 + 0.311 × X8 + 0.381 × X6

q2

0.427
0.584
0.692
0.675
0.663

RMSE

0.380
0.310
0.291
0.299
0.304

F

26.60
49.08
58.10
54.67
51.10

r2

0.516
0.663
0.700
0.688
0.672

MAE

--
--

0.204
0.207
0.211

Table 4. Experimental versus estimated data

No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Model 2

4.81
4.74
4.75
4.75
4.89
4.51
5.63
4.49
3.76
5.21
5.17
5.11
4.12
5.29
4.20
5.21
4.59
5.21
4.05
5.36
4.33
4.86
4.26
4.84
3.78
4.80
4.23

Model 1

4.84
4.77
4.77
4.78
4.86
4.43
5.63
4.50
3.72
5.13
5.10
4.97
4.23
5.36
4.20
5.34
4.57
5.21
4.08
5.26
4.29
4.91
4.26
4.75
3.84
4.91
4.22

PLS

4.88
4.84
4.85
4.86
4.88
4.55
5.37
4.43
3.95
5.30
4.63
5.22
4.62
5.49
4.40
4.61
4.37
5.22
4.02
5.41
4.78
4.68
4.25
4.67
4.07
4.39
4.39

SMLR

4.77
4.71
4.72
4.73
4.69
4.17
5.22
4.59
4.09
4.84
5.18
5.10
4.49
5.38
4.22
4.71
4.52
5.29
4.08
5.38
4.64
4.89
4.48
4.83
4.19
4.64
4.55

Experimental

4.86
4.81
4.76
4.76
4.97
4.36
5.72
4.55
3.79
5.15
5.01
5.26
4.79
5.56
4.99
5.14
4.40
5.20
4.58
5.09
4.40
4.63
3.76
4.56
3.72
4.52
3.76

Model 3

4.91
4.84
4.85
4.86
4.80
4.33
5.57
4.54
3.79
5.17
4.98
5.02
4.16
5.34
4.20
5.27
4.54
5.24
4.04
5.25
4.30
4.96
4.32
4.81
3.81
4.78
4.29

PNN



www.biosciencetrends.com

BioScience Trends. 2012; 6(4):234-240.238

solute molecule. Repulsion energy (X5) reflects the Van 
der Walls effect on solvation.

4. Discussion

To discuss the descriptors X9, X12, X15, and X16 
in the PNN models, it is necessary to illustrate the 
mechanism of the coumarin-based esterase sensitive 
prodrug systems (Scheme 2). It was reported that the 
acyl group R of 28 would be easily hydrolyzed by 
esterase at physiological pH and generate 29 with an 
unmasked phenol group. Due to the cis-geometry of 
the double bond in the structure of 29, the spontaneous 
lactonization was easily triggered by the phenolic 
hydroxyl group attacking the carbonyl group of C-6 
to form the tetrahedral 30. Then, the collapse of 
tetrahedral 30 would yield cis-coumarinic acid 31 and 
amine (3).
 According to the mechanism of the coumarin-based 
prodrug, the carbonyl of C-1 would be hydrolyzed by 
esterase and the positive charge in C-1 will benefit 
hydrolysis of the acyl group. Therefore, the atomic 
charge of C-1 (X9) should have an influence on the 

release kinetics of the coumarin prodrug system. In 
addition, considering the carbonyl group of the amide 
at C-6 would be attacked by the unmasked phenolic 
hydroxyl group in the lactonization step of 29, the 
positive atomic charge in C-6 (X15) should no doubt 
lead to enhance the release kinetics of the coumarin 
prodrug syetem for the same reason. Then, the atomic 
charge on C-3 (X12) only existed in model 1, which 
perhaps exerts an effect on the unmasked phenolic 
hydroxyl group with an inductive or conjugated effect.
It was reported that stabilizing a developing negative 
charge on the nitrogen (N-1) would facil i tate 
lactonization during the collapse of the tetrahedral 
intermediate 30 (3). Furthermore, the nitrogen charges 
also related to the pKa value of the amine which could 
affect the release rate of the coumarin system in our 
preliminary study. Therefore, the atomic charge of 
nitrogen (X16) is an important descriptor in three 
models of PNN.
 In conclusion, the present report demonstrates that 
DFT-based QSPR models can be used successfully 
to predict the release kinetics of the coumarin-based 
prodrug system. Among these models, the nonlinear 

Figure 1. Estimated versus experimental values using three different models.

Scheme 2. The mechanism of the coumarin-based esterase sensitive prodrug system.
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PNN models can provide estimated results in good 
agreement with experimental values. The descriptor 
of atomic charge of C-1, C-6 and N-1 exhibited more 
contributions to the prodrug release rate. In summary, 
this DFT-based QSPR approach can be a convenient 
way to predict release kinetics of coumarin prodrugs 
and the relative descriptors can also contribute to 
exploration of new derivatives of coumarin-based 
prodrug candidates.
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