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1. Introduction

Despite the rapid advancement of medical technology, 
malignant tumors remain a major threat to life and health 
(1). Among all cancers, primary liver cancer is one of 
the top five most common cancers globally and the 
second leading cause of cancer-related deaths, imposing 
a heavy burden on Chinese society (2). Compared 
to liver cancer, although gallbladder cancer is less 
common, its five-year survival rate is lower, and it has 
a higher degree of malignancy. Furthermore, the liver 
is a common metastatic site for other cancers, and liver 
metastasis often indicates that the disease has reached an 
advanced stage, with a lower survival rate. Over time, 
we have witnessed changing standards of treatment for 
cancer, ranging from nihilism (misconceptions, poor 
referrals, and debulking surgeries) to realism (formal R0 
resections, complex/composite resections, laparascopic 
resections, and robotic resections) to modern-day 
activism (conservative surgery, brachytherapy, and 
targeted therapy). Examples of the conservative trend 
include treatment of liver cancer, which has moved 

from resection to ablation (RFA, TACE, MWA, and 
SIRT) (66). Currently, multiple treatment strategies 
exist for liver tumors (3), among which surgery offers 
the most complete removal of tumors, significantly 
improving survival rates and lifespan (4). For biliary 
tumors, treatment plans must be tailored based on the 
patient's liver function, number of tumors, and extent of 
metastasis, though surgery remains the most effective 
approach (5).
	 However, despite surgery being an irreplaceable 
component in the treatment of hepatobiliary tumors, 
many existing issues still interfere with the efficiency and 
speed of the surgical process. For example, when faced 
with complex anatomical structures, less experienced 
surgeons may require more time and effort to complete 
tumor resections. Additionally, when cirrhosis occurs, the 
fragile vascular physiology imposes stricter demands on 
the surgeon's expertise.
	 With the continuous development of computer 
science, artificial intelligence algorithms, including 
neural networks and deep learning, have shown 
remarkable potential. In the field of oncological 
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surgery, artificial intelligence (AI) models improve a 
range of processes, from preoperative assessment and 
intraoperative assistance to postoperative monitoring, 
continuously enhancing patient survival rates and quality 
of life, and sparking a revolution in traditional surgical 
models. The effectiveness of AI models is a topic of 
discussion, but existing studies have shown that AI-
assisted surgeries, such as robotic liver resections, are 
comparable to traditional open liver resections in terms 
of treatment outcomes, while also reducing postoperative 
complications and improving survival rates (6).

2. Definition of artificial intelligence

2.1. General definitions for AI

In recent years, AI models have become increasingly 
prevalent in research, not only accelerating the collection, 
generation, transformation, and processing of data, but 
also assisting in experimental design and the formulation 
and validation of hypotheses based on experimental 
findings. These models have provided researchers with 
powerful tools, facilitating greater cross-disciplinary 
collaboration and integration (7) (Figure 1).
	 The field of artificial intelligence encompasses 
a vast range of learning algorithms, with machine 
learning models, particularly those based on neural 
networks, being among the most prominent. Commonly 
employed AI techniques in the healthcare domain 
include traditional machine learning models and deep 
learning models. Artificial intelligence serves as a 

technological nexus, bridging robotics and virtual reality 
with conventional surgical paradigms to facilitate their 
synergistic integration.
	 Broadly speaking, machine learning refers to the 
process of fitting predictive models to data or identifying 
patterns within data (8). Depending on whether the 
model is based on neural networks, machine learning 
can be classified into traditional machine learning and 
neural network-based machine learning. Furthermore, 
it can be categorized into supervised and unsupervised 
learning, depending on whether the training data requires 
classification and labeling. Traditional machine learning 
typically offers faster development and testing for a 
given problem, but often requires the dataset examples 
to have a consistent number of features (8). In practical 
applications, algorithms usually need to be adjusted 
according to the specific characteristics of the dataset, 
enabling faster and more accurate processing. This, in 
turn, increases the confidence in the derived conclusions 
and enhances the generalizability of the trained models 
(Figure 2).

2.2. Supervised learning and unsupervised learning

Supervised learning is the most commonly used form of 
machine learning. In supervised learning, the system is 
provided with features related to the learning objectives 
(such as patient demographics and risk factors) and the 
expected outcome measures (such as diagnosis or clinical 
events). The goal is to identify the relationship between 
these two elements within the dataset. When combined 
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Figure 1. Integrating Artificial Intelligence Across Stages of Hepatobiliary Cancer Surgery. This figure illustrates the integration of artificial 
intelligence (AI) into various stages of hepatobiliary cancer surgery. AI supports the preoperative stage by enhancing diagnosis, staging, prediction, 
and surgical planning. During the intraoperative stage, AI facilitates laparoscopic and robotic-assisted surgeries, real-time analysis, skill education, 
and surgical assessment. In the postoperative stage, AI aids in prediction and real-time surveillance, ensuring better patient monitoring and outcomes.



BioScience Trends. 2025; 19(4):410-420.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(4):410-420.                                                  www.biosciencetrends.com

(412)

and fostering the development of interdisciplinary 
research directions. However, because unsupervised 
learning lacks associated constraints, the experiences 
derived from repeated self-reinforcement may not 
always be accurate or beneficial. The effectiveness 
of unsupervised learning is closely related to the 
consistency between the provided data characteristics 
and the task at hand. The higher the consistency, the 
stronger the effectiveness of unsupervised learning (11).
	 Similar to supervised learning, unsupervised learning 
can also identify abnormal structures in images by 
learning from normal images, enabling preoperative 
diagnosis and assessment of tumors. For instance, 
in April 2021, Baur C incorporated an unsupervised 
auto-learning model into the interpretation of brain 
MRI images, utilizing three different unsupervised 
auto-learning models to analyze a brain MRI dataset. 
Although none of the models perfectly reproduced the 
healthy model corresponding to the given images, the 
use of the unsupervised auto-learning model alleviated 
the need for manual segmentation of experimental data 
and highlighted the differences between the images in 
the dataset and the normal healthy model (12).
	 Beyond supervised and unsupervised learning, there 
exists a hybrid model that harnesses the strengths of 
both, known as semi-supervised learning. This approach 
is capable of analyzing substantial volumes of unlabeled 
data, concurrently leveraging a modest amount of labeled 
data to bolster the model's capacity for data pattern 

with other algorithms, supervised learning models can 
significantly enhance the speed of data processing.
	 In December 2023, Dong H developed a self-
supervised learning model based on a sliding window (SW) 
approach (SWSSL) for anomaly detection in medical 
imaging. Validated with datasets of mammography and 
pneumonia X-ray images, SWSSL demonstrated its 
capability for specialized detection on high-resolution 
medical imaging datasets, helping to mitigate the problem 
of over-sampling in anomaly detection when relying solely 
on the SW method (9).
	 Beyond identifying abnormal attributes in instances, 
in January 2023, Tu Z and colleagues incorporated 2D 
image keypoints and texture from monocular video into 
a self-supervised learning model to achieve 3D organ 
reconstruction. Whether for joint movement or hand 
texture, self-supervised learning exhibited remarkable 
performance (10).
	 Unlike supervised learning, in unsupervised learning, 
the computer is provided with unlabeled data records (13), 
and through a self-reinforcing mechanism, it identifies 
and determines whether there are any underlying 
relationships between the input data. In other words, 
it learns from its own predictions and strengthens 
the associations between existing experiences and 
appropriate responses. This characteristic of unsupervised 
learning enables it to explore hidden relationships across 
multiple domains such as genomics, metabolomics, and 
biochemistry, providing researchers with new insights 

Figure 2. Framework of Machine Learning and Neural Network Applications in Medicine. This figure illustrates machine learning 
frameworks and neural networks in medical applications. Neural network models, including CNNs, RNNs, and DNNs, are shown on the left. The 
center highlights traditional and neural network-based machine learning, extending into VR, AR, and robotics. The right categorizes machine 
learning into supervised, semi-supervised, and unsupervised learning methods.
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recognition. As a result, it enhances the velocity and 
precision of extracting insights from extensive datasets, 
thereby alleviating the research burden and streamlining 
the analytical process for scientists (13).

2.3. Neural network

Neural network models represent the foundational 
cornerstone of deep learning, encompassing a spectrum 
of architectures such as traditional artificial neural 
networks, convolutional neural networks (CNNs), deep 
neural networks (DNNs), and recurrent neural networks 
(RNNs). Notably, CNNs have demonstrated exceptional 
efficacy in the recent empirical literature (14).
	 The canonical structure of a convolutional neural 
network is comprised of alternating convolutional and 
pooling layers. The convolutional layers are instrumental 
in identifying local feature connections from preceding 
layers, while pooling layers aggregate semantically 
analogous features into singular representations. This 
arrangement, when stacked with fully connected layers, 
forms the backbone of a conventional CNN (15). 
Advanced deep convolutional neural networks have 
notably ameliorated the generalization weakness of 
their traditional counterparts, securing their status as the 
algorithm of choice within the domain of medical image 
analysis. A case in point is the research by Huang J et 
al. in 2022, wherein a CNN-based model was crafted to 
discern features indicative of epilepsy and schizophrenia 
from static and dynamic brain MRI imagery, thereby 
enhancing the discriminative power of the CNN-
learned features (16). Nonetheless, deep learning models 
are susceptible to overfitting on training datasets, 
necessitating rigorous external validation to ensure their 
generalizability and robustness (17).

2.4. Artificial intelligence-enhanced robotic surgery

The field of medical robotics has become increasingly 
prominent within the domain of surgical procedures, 
with the da Vinci Surgical System exemplifying a 
paradigmatic application of artificial intelligence in 
this context. Endorsed by the U.S. Food and Drug 
Administration in 2005 for its utility in soft tissue 
surgery, this system stands unparalleled. The system 
operates on a master-slave remote control paradigm, 
where the surgeon, positioned adjacent to the patient at 
the master console, directs the robot (18). Equipped with 
cameras and tremor-free instruments, the robot provides 
the surgeon with an enhanced, magnified 3D perspective 
of the surgical field (65). The slave arm executes the 
surgical maneuvers on the patient, while the surgeon 
views the internal organs through the endoscope and 
adjusts the position of the slave robot by manipulating 
the master manipulator (18). The robotic surgery system 
boasts several key advantages, including a broader 
range of motion compared to laparoscopic instruments, 

an expanded visual field for surgery, and heightened 
precision in operational maneuvers.
	 Within the specialty of urology, robotic radical 
cystectomy (RARC) has reached a level of maturity. 
RARC is associated with reduced blood loss and 
transfusion rates when juxtaposed with the traditional 
open radical cystectomy (ORC), while maintaining 
superior oncological outcomes and comparable 
postoperative complication rates (20). A systematic 
comparison of the safety and efficacy of da Vinci robotic 
surgery versus conventional surgery was conducted by 
Liu Z et al. in 2017. Their findings indicated that, in the 
context of cervical cancer, robotic surgery outperformed 
both traditional open and conventional laparoscopic 
approaches in terms of blood loss, surgical extent, and 
intraoperative complications (21). Despite the current 
limitations in cost-effectiveness associated with robotic 
surgery, the technology is evolving, with anticipated 
advancements on the horizon that promise to further 
refine its utility and efficiency.
	 AI-assisted surgical interventions represent an 
emerging trend in the future of oncological surgery. 
By developing intelligent models trained on real-
world surgical datasets, robotic systems can acquire 
capabilities to perform routine procedural tasks. For 
instance, a preclinical study demonstrated the feasibility 
of autonomous small bowel end-to-end anastomosis in 
porcine models under laparoscopic settings, achieving 
operative independence from surgeon intervention 
(67). Similar applications hold transformative potential 
in hepatobiliary tumor resection, such as AI-guided 
suction devices for intraoperative hemorrhage clearance 
or automated systems for superficial wound closure. 
By analyzing multimodal historical imaging datasets 
including CT and MRI scans alongside intraoperative 
computer  vis ion systems for  real- t ime image 
interpretation, artificial intelligence achieves automated 
tumor-to-healthy tissue discrimination in robotic surgery, 
enabling submillimeter precision during oncological 
resection (70).

2.5. Virtual reality

Vir tual  rea l i ty  (VR) technology engenders  a 
comprehensively immersive experience by leveraging a 
triad of sensory modalities: visual, auditory, and tactile. 
This multifaceted approach integrates real-time interactive 
images and sounds, simulating a spectrum of sensations 
akin to those encountered in the physical world, thereby 
harnessing the capabilities of multi-sensory technology.
	 Virtual reality has been extensively integrated 
into surgical skill acquisition, demonstrating dual 
transformative capacities. Primarily, machine learning 
frameworks incorporating clustering algorithms enable 
quantitative profiling of trainees' learning curves through 
VR-derived kinematic data analytics. By predicting 
proficiency attainment thresholds—quantified as 
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required trial repetitions—these AI-powered systems 
assess individual competency trajectories, thereby 
facilitating personalized training protocols that optimize 
group training efficiency (69). Secondarily, within 
interactive VR surgical simulations, artificial intelligence 
dynamically adapts procedural pathways based on 
operator decisions while cross-referencing institutional 
databases to issue preemptive alerts regarding high-risk 
anatomical zones, such as error-prone dissection planes 
and vasculature proximity. AI-powered VR systems 
deliver personalized cognitive behavioral therapy (CBT) 
and mindfulness interventions for postoperative cancer 
patients, creating secure virtual environments to enhance 
therapeutic efficacy and improve quality of life (68).
	 In a pivotal 2019 study, Tao XM unveiled a 
revolutionary set of skin haptic interfaces, remarkable for 
their wireless control and power capabilities, eschewing 
the need for batteries. These innovative interfaces pave 
the way for augmenting VR and augmented reality 
(AR) experiences, transcending the traditional confines 
of vision and hearing (22). Their applications extend 
to material development, device design, integration 
strategies, and system layout. The utility of VR is already 
evident in various medical disciplines, including cardiac 
intervention (23), intensive care (24), laparoscopic 
surgery (25), and mental health (26). Anticipating 
future trends, the medical field is poised to witness 
an increasing integration of virtual and augmented 
reality technologies, heralding a new era in healthcare 
innovation.

3. Preoperative stage

Accurate preoperative diagnosis and assessment are 
critical components in the surgical management of 
hepatobiliary tumors. In line with clinical practice 
guidelines for hepatocellular carcinoma published by 
various countries, including China (4), Japan (28), South 
Korea (29), and the United Kingdom (30), definitive 
diagnosis of primary hepatocellular carcinoma can be 
established through pathology, immunohistochemistry, 
and radiomics. Regarding preoperative evaluation, 
the commonly utilized staging systems include the 
Barcelona Clinic Liver Cancer (BCLC) staging system 
(29,30), the modified International Union Against 
Cancer (mUICC) staging system (28), and the Chinese 
Liver Cancer (CNLC) staging system (4). These systems 
incorporate clinical characteristics such as tumor size 
and number, vascular and bile duct invasion, lymph node 
involvement, distant metastasis, and liver function status. 
Staging systems serve to aid in decision-making and 
prognostic assessment; thus, high-precision preoperative 
staging is a key determinant in the surgical treatment of 
hepatobiliary tumors.
	 Traditional preoperative risk prediction and 
surgical planning are subject to variations influenced 
by individual surgeons, potentially introducing bias. 

The incorporation of artificial intelligence-assisted 
diagnostics and staging evaluations can circumvent such 
variability, thereby optimizing surgical outcomes and 
contributing to a more standardized and refined approach 
to patient management.

3.1. AI-Enabled histopathology

The stratification of tumors and the assessment of 
microvascular invasion (MVI) are acknowledged as 
the two paramount prognostic indicators in the surgical 
management of hepatic malignancies (31). At present, the 
detection of MVI primarily relies on histopathological 
examination of postoperative specimens, underscoring 
the critical role of AI-driven models in preoperative 
evaluation of MVI for informed clinical decision-
making. In a seminal study from 2009, Varghese et 
al. harnessed preoperative variables, including tumor 
volume, to train an Artificial Neural Network (ANN), 
revealing that the ANN outperformed conventional linear 
predictive models in accurately discerning Hepatocellular 
Carcinoma (HCC) grade and MVI status (32). Advancing 
this field, in 2020, Saillard et al. employed a pre-trained 
Convolutional Neural Network (CNN) to analyze 
HCC histopathological images, extracting features 
that were subsequently utilized to develop two distinct 
deep learning algorithms for the prediction of patient 
survival rates. These models demonstrated superior 
predictive accuracy over composite scoring systems 
in estimating survival rates for liver cancer, thereby 
validating the integrative application of AI algorithms 
in the preoperative prognostic assessment of HCC 
patients (27). Furthermore, the identification of specific 
immunogenic genes within histopathological images 
has been instrumental in shaping preoperative strategies. 
Illustratively, in 2022, Zeng et al. from France developed 
a suite of deep learning models, including Patch, Multiple 
Instance Learning (MIL), and Clustering Constrained 
Attention Multiple Instance Learning (CLAM), for the 
analysis of histological images. Notably, the CLAM 
model excelled in screening efficacy, showing promise in 
predicting patient responsiveness to immunotherapeutic 
interventions (17).

3.2. AI-radiomics

Integrating AI with hepatobiliary oncologic radiomics 
for enhanced preoperative diagnostics, surgical 
planning, and prognostic assessment: Mazzaferro V 
et al. in 2008 established that microvascular invasion, 
irrespective of its size or quantity, is a significant 
predictor of poorer overall survival and increased post-
transplant recurrence in hepatocellular carcinoma 
patients undergoing liver transplantation, marking it as 
the most influential covariate impacting patient prognosis 
(34). Current preoperative assessments are limited to 
providing pre-emptive probabilities of MVI or associated 
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biomarkers (34). The deployment of AI models allows 
for a more nuanced prediction of MVI extent and a more 
accurate prognostic determination. A case in point is the 
work by Xia TY in 2023, who pioneered a radiomics 
methodology predicated on preoperative multiphase CT 
scans to prognosticate MVI, utilizing hybrid models to 
forecast MVI status and, consequently, patient recurrence 
survival rates (33).
	 Expanding beyond MVI, the evaluation of donor 
liver volume and vascular architecture is pivotal to the 
safety and postoperative survival rates associated with 
liver transplantation. Conventionally, the preoperative 
phase of living donor liver transplantation necessitates 
manual segmentation of the resection plane by surgeons 
based on CTA imaging of hepatic vasculature (37). This 
process is not only labor-intensive but also susceptible to 
inaccuracies due to the partial volume effect, which can 
obscure tumor margins. The incorporation of artificial 
intelligence significantly bolsters the reproducibility of 
tumor segmentation (36). Illustratively, between 2022 
and 2023, Oh N developed a residual model based on 
pre-transplant CTA data, facilitating the construction 
of a 3D liver model. This model enabled automated 
segmentation of liver parenchyma and vascular 
structures, as well as volumetric assessment derived 
from these segmentations. When compared to manual 
surgical segmentation, artificial intelligence yielded more 
consistent and stable outcomes, demonstrating a higher 
correlation with actual values (37).
	 Although PET-CT possesses significant diagnostic 
and evaluative utility, its broader implementation is 
hindered by inherent limitations, such as fusion artifacts 
and motion-related image degradation. The deployment 
of artificial intelligence technologies offers a means 
to mitigate these issues by reducing image noise and 
augmenting image quality. Consequently, AI enhances 
the accuracy of preoperative diagnostic procedures, 
tumor staging, therapeutic decision-making, and the 
assessment of treatment responses (38).
	 In the context of metastatic liver cancer, artificial 
intelligence holds substantial promise. For instance, in 
the case of colorectal cancer, preoperative identification 
of high-risk patients with a poor prognosis is crucial 
to avoid unnecessary aggressive treatment. A pertinent 
example is the work by Keyl J et al. in 2022, who 
utilized a pre-trained convolutional neural network-based 
nnU-Net model to extract prognostic parameters from 
abdominal CT images of patients with colorectal liver 
metastases. This included the automatic segmentation of 
metastatic liver lesions, leading to the development of a 
personalized survival risk prediction model for advanced-
stage colorectal cancer patients (39).
	 Furthermore,  addit ional cl inical  indicators 
significantly influence the preoperative risk assessment 
of hepatobiliary tumors. In 2024, Jin Y et al. introduced 
a suite of five machine learning-based models, 
encompassing Logistic Regression (LR), Random 

Forest, Extreme Gradient Boosting (XGB), Light 
Gradient Boosting Machine (LGBM), and Artificial 
Neural Networks. These models were employed to 
assess various patient examination indicators, with the 
ANN model demonstrating superior performance. It was 
capable of early identification of patients at an elevated 
risk of Posthepatectomy Liver Failure (PHLF) (35).

4. Intraoperative stage

Within the realm of surgical interventions, the caliber 
of the surgeon's technical skills often surpasses 
perioperative care in its impact on surgical outcomes. 
Proficiency in surgical techniques is paramount for 
the prevention of intraoperative complications such as 
hemorrhage or vascular occlusion and may correlate with 
reduced procedural durations, consequently mitigating 
the risk of postoperative morbidity (40).

4.1. Artificial intelligence-enhanced laparoscopic surgery

Laparoscopic surgery has become widely recognized 
for its merits. When juxtaposed with open surgical 
approaches, laparoscopy is associated with more 
favorable rates of perioperative and postoperative 
complications, as well as abbreviated hospitalization 
periods (41). However, as the indications for laparoscopy 
broaden, several challenges have come to light. 
Notably, the intricate anatomical structures and vascular 
networks encircling the liver necessitate meticulous 
identification and circumvention during laparoscopic 
procedures. Furthermore, the insufflation of gas for 
pneumoperitoneum can induce liver displacement, 
distortion, and torsion of the hepatic hilum vessels (19), 
creating disparities between preoperative radiographic 
images and intraoperative realities, which augments the 
complexity of the surgery (42).
	 Incorporating artificial intelligence technologies 
such as Virtual Reality and Deep Learning (DL) in 
laparoscopic hepatectomy is considered to mitigate the 
aforementioned challenges to a significant extent. DL can 
be utilized to identify anatomical structures within the 
surgical field, thereby reducing the risk of adverse events. 
In 2020, Madani A et al. trained a pyramid scene parsing 
network model, composed of a convolutional neural 
network and a multi-scale pyramid pooling module, 
using several frames from laparoscopic cholecystectomy 
videos. The results demonstrated that this model could 
efficiently recognize key structures in the surgical area 
during laparoscopic cholecystectomy (LC) (43).
	 The integration of VR with surgical procedures 
has emerged as a hot topic in recent research. In 2022, 
Ramalhinho J interactively superimposed a 3D model 
of the liver, including the liver surface, vasculature, and 
virtual target tumors, onto laparoscopic liver views. 
Three methods were compared for participant tumor 
localization accuracy: unguided, single-screen display, 
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and augmented reality overlay. The conclusion was that 
any form of guided display improved performance and 
usability compared to unguided surgery, with the single-
screen display showing the most significant results. 
However, participants expressed a preference for AR 
overlay that enhanced precision, which in turn augmented 
the performance and decision-making capabilities during 
laparoscopic surgery (44).

4.2. Robotic-assisted surgery

The field of robotic surgery has witnessed remarkable 
progress in recent years, with substantial evidence 
supporting the safety and efficacy of robotic hepatectomy 
as a viable alternative to laparoscopic hepatectomy. 
A study conducted by Jeong IG in 2017 indicated 
that robotic-assisted nephrectomy does not confer an 
increased risk of major complications when compared 
with laparoscopic approaches (45). Furthermore, a 
multicenter randomized controlled trial by Feng Q et 
al. in 2022 demonstrated that, for patients with mid 
to low rectal cancer, robotic surgery offers superior 
tumor resection, reduced surgical trauma, and enhanced 
postoperative recovery over conventional laparoscopic 
surgery (46). In 2024, Birgin E conducted a single-
center randomized controlled single-blind study on 
patients with resectable liver malignancies, revealing 
no significant disparities in quality of life, perioperative 
morbidity, or oncological outcomes between those 
who underwent robotic hepatectomy and those who 
underwent laparoscopic hepatectomy (47).
	 In liver transplantation, the utilization of robotic 
systems is in its nascent stages. In April 2022, South 
Korea executed a pioneering procedure involving 
laparoscopic donor and recipient hepatectomy followed 
by robotic-assisted living donor liver transplantation. 
The robotic surgery system's advantages include 
stable visualization, facilitation of microsurgery, 
and incorporation of tremor correction and articular 
motion functionalities (48). In August 2023, Saudi 
Arabia marked a milestone by performing the world's 
first fully robotic living donor hepatectomy and liver 
transplantation implantation using the da Vinci Surgical 
System. This approach, in comparison to traditional 
hepatectomy, offers a three-dimensional perspective of 
the surgical field, enhanced visualization, and refined 
manipulation capabilities (49).
	 Despite the demonstrated precision, efficacy, and 
safety of robotic surgery systems in hepatobiliary 
tumor surgery, several challenges persist, including the 
constraints of limited operating space, restricted visual 
fields, difficulties in hepatic venous anastomosis due to 
excessive tension, and the high skill requirements for 
surgeons.

4.3. Artificial intelligence in the analysis of laparoscopic 
videos

The observation of surgical procedures is a rich 
educational resource for resident surgeons. A cardinal 
principle in medical education, particularly when 
acquiring new operative techniques, is encapsulated by 
the adage 'see one, do one, teach one'(50). By observing 
hepatobiliary surgical procedures, novice learners can 
closely scrutinize the intricacies of the operative process, 
thereby gaining a more profound comprehension of 
the anatomy and vascular architecture of abdominal 
organs such as the liver, as well as becoming intimately 
acquainted with the diseases under study and the 
procedural steps involved.
	 Laparoscopic surgery is particularly amenable to the 
development of audio-visual educational materials, with 
surgical videos providing an accurate depiction of the 
surgeon's viewpoint, thereby offering students essential 
insights into anatomical structures and the sequential 
steps of surgery (51). The task of manually indexing and 
analyzing these surgical videos is arduous and resource-
intensive; thus, the employment of artificial intelligence 
for automated video indexing and as an adjunct in 
surgical pedagogy is not only warranted but also offers 
significant pedagogical benefits.
	 The task of automatically discerning surgical phases 
from video footage alone is inherently challenging. 
Initially, there is a paucity of inter-class distinctions 
between various phases, while substantial intra-class 
differences exist within the same phase. Additionally, 
the scene's clarity is often compromised due to factors 
such as camera movement and surgical smoke, which 
exacerbate the complexity of phase identification. 
Thirdly, the camera may not persistently capture the 
surgical field during intricate procedures, introducing 
extraneous imagery into the video record (52). Therefore, 
to attain a high degree of accuracy in the automated 
segmentation of surgical phases, it is essential to 
develop a model capable of concurrently harnessing 
video imagery characteristics, kinetic features, and 
spatiotemporal attributes.
	 Among the myriad of artificial intelligence 
algorithms, convolutional neural networks (CNNs) hold 
a distinct advantage in image and object recognition, 
frequently being employed to identify intraoperative 
characteristics in surgical videos, such as insufflation 
pressure and operating table position, tool usage 
and application—including the timestamps for the 
deployment and cessation of each instrument, as 
well as their usage patterns—video feature extraction 
and learning, such as operation recognition, and the 
prediction of remaining surgery time, thereby enhancing 
the efficiency of video review (53). In July 2016, a study 
from France introduced a novel CNN framework named 
EndoNet, designed for detection tasks like tool presence 
and phase identification, while also analyzing the impact 
of the volume of training data on the framework's 
performance. This addressed phase identification issues 
in laparoscopic surgery and pioneered a new method for 
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directly learning visual features from raw images (54). 
In May 2018, researchers from Hong Kong presented 
an innovative approach to surgical video analysis by 
integrating deep residual networks (ResNet) and long 
short-term memory networks (LSTM) to construct a 
novel recurrent convolutional neural network framework, 
SV-RCNet. This framework extracts visual features and 
temporal models from videos and is trained to recognize 
discriminative features in surgical videos, thereby 
accurately identifying surgical procedural steps (52). In 
March 2020, a study from Japan utilized a CNN model 
capable of identifying specific segments of laparoscopic 
surgery, assigning video clips to predefined surgical 
phases based on their characteristics, and constructed 
a large annotated surgical video dataset. Training 
CNNs requires a substantial amount of labeled data 
and significant parallel computing power, making this 
research conducive to the refinement of CNN models 
with potential applications in automated video indexing 
and surgical skill assessment (55).
	 Artificial intelligence is increasingly being 
employed for the identification of fundamental motion 
characteristics within surgical video contexts, particularly 
for simple procedural actions such as suturing, needle 
passing, and knot tying that are common in robotic 
minimally invasive surgery. The categorization of 
surgical gestures from video data is facilitated through 
the application of Linear Dynamical Systems (LDS), Bag 
of Features (BoF) models, and a synergistic approach 
combining both methods within a Multiple Kernel 
Learning (MKL) framework. These methodologies have 
been instrumental in the development of an integrated 
framework that amalgamates video and kinematic data, 
thereby enhancing the accuracy of surgical gesture 
recognition. This advanced capability not only aids in 
the execution of rudimentary surgical maneuvers and 
provides real-time feedback on procedural deficiencies, 
which can lead to reduced operative times and 
diminished surgical risks, but also serves to activate 
context-sensitive information displays. Specifically, 
when an AI model identifies a particular gesture, it 
can anticipate the forthcoming actions required by 
the surgeon and the tools that may be necessary, thus 
enabling the surgical team to proactively prepare for 
imminent procedural steps (56).

4.4. Artificial intelligence in surgical skill education

Within the paradigm of Robotic-Assisted Surgery (RAS), 
the conventional pedagogical approach of 'see one, do 
one, teach one' (50) has reached its limitations. The 
adoption of Virtual Reality models for the simulation of 
RAS procedures represents a more efficacious avenue 
for novice surgeons to acquire and refine their technical 
skills. While research has yet to fully substantiate the 
effectiveness of VR in mastering the intricacies of 
robotic surgery, the anticipated enhancements in VR 

model precision are poised to markedly transform the 
landscape of surgical training (57). In 2018, a forward-
looking randomized controlled trial in the United 
Kingdom assessed the comparative efficacy of 2D video 
and 360-degree VR video in teaching single-handed 
surgical knotting. The study revealed that the immersive 
360-degree VR video significantly outperformed the 2D 
modality in knotting skill acquisition, underscoring its 
potential as an educational tool (58).

4.5. Application of artificial intelligence in the video-
assessment of surgical skills

The American Board of Surgery (ABS) recognized in 
2023 the utility of Video-Based Assessment (VBA) 
as a complementary tool for evaluating the technical 
proficiency of surgeons, affirming its role in identifying 
and providing corrective feedback to underperforming 
surgical candidates (59). Machine learning techniques 
offer the promise of streamlining VBA processes, thereby 
augmenting the efficacy of skill evaluation. Nonetheless, 
the deployment of unsupervised deep learning models 
can engender what is often referred to as the 'black box' 
phenomenon, which obscures the rationale behind the 
scoring, thus impeding the ability of the assessed to 
discern the factors contributing to their performance 
outcomes (60).

5. Postoperative stage

5.1. Artificial intelligence for postoperative morbidity 
and survival prediction

Deficiencies in postoperative surveillance can result 
in the misclassification of patients at elevated risk for 
complications, potentially leading to their placement in 
general wards rather than intensive care units. In 2021, 
Loftus TJ utilized established random forest and nearest 
neighbor algorithms to demonstrate that inadequate triage 
is associated with increased mortality and morbidity 
rates (61). The principal aim of AI in the postoperative 
period is to prognosticate the likelihood of postoperative 
complications, promptly detect suboptimal triage 
scenarios, and facilitate real-time patient monitoring. 
The MySurgeryRisk AI system, which integrates 
electronic health record (EHR) data with machine 
learning algorithms—including generalized additive 
models and random forests—predicts postoperative 
complications with increasing accuracy as more features 
are incorporated into the model (62). In June 2021, 
Bonde A conducted a retrospective analysis, training a 
deep neural network (DNN)-based postoperative risk 
prediction model within a structured electronic medical 
data system. This analysis revealed that the model's 
performance escalated with an increased number of input 
variables, and even in the presence of incomplete data, 
the DNN model retained a high degree of precision. 
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This suggests that the integration of AI has transformed 
postoperative complications from an enigmatic risk into 
a foreseeable and manageable one (63).
	 For the majority of neoplasms, postoperative 
pathological imagery is intricately linked to patient 
prognosis. The deployment of convolutional neural 
network models on whole-slide imaging (WSI) of digital 
histological sections from patients who have undergone 
hepatectomy for hepatocellular carcinoma enables the 
generation of risk scores. These models can autonomously 
pinpoint the most pertinent risk areas within WSI, thereby 
facilitating the prediction of post-hepatectomy survival. 
Their predictive accuracy surpasses that of traditional 
prognostic models that combine clinical, biological and 
pathological characteristics. Nonetheless, there is a dearth 
of research attesting to the robust generalizability of these 
models (27).

5.2. AI-based real-time postoperative surveillance

AI-based real-time postoperative surveillance holds a 
distinct advantage in its capacity to merge instantaneous 
predictive analytics with clinical and digital workflows. 
The transformative potential of AI in enhancing patient 
survival rates following surgery is most notably realized 
through its capability to identify shifts in patient 
clinical trajectories in a timely manner. This facilitates 
a smooth transition between in-hospital and remote 
monitoring, such as through smartwatch-integrated 
remote electrocardiogram monitoring. Such technology 
encourages prompt medical engagement among 
postoperative patients, thereby reducing postoperative 
morbidity rates (64). This strategy not only bolsters 
patient outcomes but also optimizes the allocation of 
healthcare resources, contributing to a more efficient and 
sustainable healthcare delivery model.

6. Conclusion

In recent years, hepatobiliary tumors have persistently 
posed a significant threat to human health. The 
convergence of AI models, including neural networks, 
deep learning, robotic technology, and virtual reality, 
with surgical treatments for hepatobiliary tumors has 
the potential to yield a synergistic effect that surpasses 
the sum of its individual components. This integration 
aims to achieve the dual goals of reducing incidence and 
mortality rates, while simultaneously improving survival 
rates and prolonging survival times. Although AI faces 
a myriad of challenges in practical application, such 
as issues of medical ethics and morality, the need for 
clinical standardization, and concerns regarding model 
generalizability, the ongoing refinement and training of 
AI technologies are poised to exert a profound influence 
on the paradigms of hepatobiliary tumor surgery.
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