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1. Introduction

Stroke is one of the leading causes of mortality and 
long-term disability worldwide, with its high incidence 
and associated impairments imposing a substantial 
burden on individuals, families, and society. According 
to 2021 statistics, more than 16 million people globally 
suffer from stroke, and approximately one-third of 
these patients experience permanent disability (1). 
As a neurovascular emergency, stroke commonly 
results in motor deficits, cognitive dysfunction, and 
emotional disturbances. Chronic motor dysfunction, and 
particularly hemiplegia, affects nearly 30% of stroke 
survivors, making it one of the most disabling outcomes 
(2). Moreover, post-stroke cognitive impairment (PSCI) 
is reported in 25% to 80% of patients (3), and a study 
in a Chinese cohort showed that 57.8% of 963 stroke 

patients exhibited depressive symptoms (4). Although 
conventional rehabilitation approaches, including 
physical therapy, occupational therapy, and speech 
therapy, have demonstrated certain benefits, their 
efficacy is often limited by insufficient individualization, 
suboptimal therapeutic outcomes, and prolonged 
recovery periods. Research indicates that approximately 
20% to 30% of stroke patients are unsuitable candidates 
for therapies such as constraint-induced movement 
therapy (CIMT) and other conventional rehabilitation 
strategies (5).
 In recent years, advances in neuroscience and 
engineering have led to the emergence of brain-
computer interface (BCI) technology, which offers 
novel therapeutic avenues for stroke rehabilitation. 
BCIs decode neural signals and either translate them 
into commands for external devices or use them directly 
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SUMMARY: Stroke remains a leading cause of mortality and long-term disability worldwide, frequently resulting 
in impairments in motor control, cognition, and emotional regulation. Conventional rehabilitation approaches, while 
partially effective, often lack individualization and yield suboptimal outcomes. In recent years, brain-computer 
interface (BCI) technology has emerged as a promising neurorehabilitation tool by decoding neural signals and 
providing real-time feedback to enhance neuroplasticity. This review systematically explores the use of BCI systems 
in post-stroke rehabilitation, focusing on three core domains: motor function, cognitive capacity, and emotional 
regulation. This review outlines the neurophysiological principles underpinning BCI-based motor rehabilitation, 
including neurofeedback training, Hebbian plasticity, and multimodal feedback strategies. It then examines recent 
advances in upper limb and gait recovery using BCI integrated with functional electrical stimulation (FES), robotics, 
and virtual reality (VR). Moreover, it highlights BCI's potential in cognitive and language rehabilitation through 
EEG-based neurofeedback and the integration of artificial intelligence (AI) and immersive VR environments. In 
addition, it discusses the role of BCI in monitoring and regulating post-stroke emotional disorders via closed-loop 
systems. While promising, BCI technologies face challenges related to signal accuracy, device portability, and 
clinical validation. Future research should prioritize multimodal integration, AI-driven personalization, and large-
scale randomized trials to establish long-term efficacy. This review underscores BCI's transformative potential in 
delivering intelligent, personalized, and cross-domain rehabilitation solutions for stroke survivors.
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for neurofeedback, thereby enhancing neuroplasticity 
and functional recovery (6). BCI applications have 
displayed considerable potential in motor recovery, 
cognitive training, and emotional regulation. The 
rehabilitation needs of stroke patients are complex 
and multidimensional, encompassing motor function 
restoration, cognitive reorganization, and emotional 
stabilization (7). These domains are highly interrelated. 
For instance, cognitive impairments may reduce 
the motivation for motor training, while emotional 
disturbances can exacerbate functional limitations. 
Consequently, the development of interdisciplinary 
and personalized rehabilitation strategies based on BCI 
technology has become a critical focus of contemporary 
research.
 This review investigates the role of BCI in stroke 
rehabilitation by examining its applications across 
motor, cognitive, and emotional domains (Figure 1). 
Specifically, it explores BCI-driven motor rehabilitation 
mechanisms and techniques, assesses cognitive 
and emotional training potentials, and discusses the 
integration of artificial intelligence (AI) and virtual 
reality (VR) into BCI-based interventions. Finally, 
it outlines the technical and clinical challenges that 
remain and proposes future research directions aimed at 
advancing this promising field.

2. BCI-based motor function rehabilitation

2.1. Principles of BCI rehabilitation for motor 
dysfunction

 Motor dysfunction is one of the most common and 
debilitating sequelae of stroke, severely compromising 
patients independence in daily living. BCI-based 
rehabilitation systems offer innovative and effective 
approaches to restoring motor function by enhancing 
neural plasticity through real-time brain signal 
interaction.

2.1.1. Neurofeedback training

Neurofeedback training is a foundational mechanism 
in BCI-based motor rehabilitation, allowing patients 
to self-regulate brain activity by observing real-time 
neural signals (8). By visualizing the activation of motor-
related cortical regions on a screen, patients can reinforce 
motor-related brain activity through motor imagery (9). 
This technique enhances motor intention and promotes 
functional reorganization of cortical networks (10). 
Repeated neurofeedback sessions have been shown to 
reactivate impaired motor areas, leading to measurable 
improvements in motor performance (11).

2.1.2. Operant conditioning

Operant conditioning utilizes a reward-based mechanism 
to reinforce desired neural patterns (12). In the BCI 
context, when patients successfully generate motor 
intention, such as imagining raising of the arm, the 
system delivers visual, tactile, or electrical feedback 
as reinforcement (13). This positive feedback not only 
boosts patient confidence but also reinforces motor 
circuit reorganization through reinforcement learning 
principles (14).

2.1.3. Repetitive participation and task-oriented training

The principle of "use it or lose it" underscores the 
necessity of repeated motor activity to enhance neural 
circuits. BCI systems enable patients to repeatedly 
engage in task-oriented training, such as controlling 
a virtual arm to perform grasping tasks using brain 
signals (15). Such task-oriented practice facilitates 
the remodeling of key motor pathways, including the 
corticospinal tract and corpus callosum, ultimately 
improving motor coordination and accuracy (16).

2.1.4. Hebbian plasticity
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Figure 1. Mechanisms of brain-computer interface applications across motor, cognitive, and emotional domains in stroke rehabilitation.
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following BCI training (24). Later, Ang et al. integrated 
electroencephalography (EEG)-based BCI with the MIT-
Manus robotic system, and they reported a 4.9-point 
average improvement in Fugl-Meyer Assessment (FMA) 
scores after 12 sessions (25). However, a meta-analysis 
revealed that training of a shorter duration (< 12 hours) 
was associated with greater functional gains, suggesting 
an optimal training window (26).

2.2.2. Motor recovery with FES

FES complements BCI-based rehabilitation by executing 
movements corresponding to decoded motor intentions. 
Chung et al. found that BCI-triggered FES improved 
postural stability and gait coordination in chronic 
hemiplegic patients, as evinced by improved timed 
up and go (TUG) test scores (27). FES also enhances 
Hebbian plasticity via closed-loop feedback, facilitating 
cortical reorganization (28). A randomized controlled 
trial (RCT) by Jiang et al. further confirmed that BCI-
FES training significantly improved hand grip strength 
and enhanced alpha wave activity in the motor cortex, 
indicating that this combined approach facilitates motor 
network reorganization (29).

2.2.3. Integration of robotic assistance and VR

Robotic devices are increasingly being integrated into 
BCI systems to provide precise mechanical support and 
stimulate neuroplasticity (30). Ramos-Murguialday et 
al. developed a BCI-controlled robotic arm, resulting in 
notable improvements in hand strength and movement 
precision (31). Functional magnetic resonance imaging 
(fMRI) results confirmed increased activation in motor-
related brain areas post-training (32). VR-enhanced BCI 
systems further improve user engagement and realism. 
For instance, Pichiorri et al. combined VR with motor 
imagery (MI) tasks, which improved both MI success 
rates and motor function (33). Immersive VR enhances 
the realism of imagined movements, thereby optimizing 
training outcomes (22).

2.2.4. Gait rehabilitation and locomotion training

Gait impairment is a common post-stroke functional 
deficit, characterized by reduced step length, decreased 
gait speed, and poor balance control, severely 
affecting independent ambulation (34). BCI-based gait 
rehabilitation has emerged as a key research focus. 
Tang et al. explored a BCI gait rehabilitation system 
combining MI with visual feedback. After six weeks 
of training, significant improvements were observed 
in TUG test performance and gait stability and were 
correlated with increased corticospinal activity in the 
contralateral primary motor cortex (M1) (34,35). Kim et 
al. further developed a BCI-integrated exoskeleton-based 
lower limb training platform, allowing patients to control 

Hebbian plasticity, commonly summarized as "neurons 
that fire together, wire together," is another core concept 
in BCI motor rehabilitation (17). Stroke survivors 
often experience a disconnect between motor intention 
and actual movement, resulting in diminished sensory 
feedback to the motor cortex (18). BCI systems restore 
this feedback loop via robotic or tactile stimulation, 
re-establishing the association between intention and 
feedback, thereby promoting cortical disinhibition and 
functional recovery (17,19).

2.1.5. Personalized and adaptive training

Due to individual differences in stroke lesion location 
and severity, rehabilitation protocols must be highly 
individualized. Modern BCI platforms employ machine 
learning algorithms to dynamically adjust training 
difficulty and feedback modalities. Patients with more 
severe impairments may receive simplified tasks with 
intensive feedback, whereas those with better residual 
function can be challenged with more complex tasks to 
further enhance recovery potential.

2.1.6. Multimodal feedback integration

Conventional BCI systems often rely solely on 
visual feedback. However, integrating multimodal 
stimuli, including tactile, auditory, and VR-based 
feedback, has been shown to significantly enhance 
therapeutic outcomes (20,21). VR technologies, in 
particular, offer immersive environments that increase 
training engagement and perceived agency (22). This 
multisensory feedback fosters deeper neural engagement 
and promotes more effective reorganization of motor 
networks.

2.2. Advances in BCI-based motor rehabilitation

Stroke-related motor dysfunction significantly limits 
activities of daily living and social participation. Upper 
limb impairments are particularly prevalent, affecting 
approximately 80% of survivors (23). Recent innovations 
in BCI motor rehabilitation have incorporated 
neurofeedback, functional electrical stimulation (FES), 
robotic systems, and VR, expanding therapeutic 
possibilities.

2.2.1. BCI in upper limb rehabilitation: Clinical 
applications

Initial BCI research primarily focused on recovery 
of upper limb function, exploring how decoding 
brain activity could restore voluntary motor control. 
Buch et al .  were among the pioneers utilizing 
magnetoencephalography (MEG) to assess sensorimotor 
rhythm (SMR) training in chronic stroke patients, 
who displayed increased motor cortex activation 
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the exoskeleton for gait training, which led to significant 
improvements in gait accuracy and stability (36).

2.2.5. Multimodal integration and personalized 
rehabilitation approaches

Recent developments emphasize multimodal integration 
and personalized training protocols. Dual-modality 
BCI systems combining EEG and functional near-
infrared spectroscopy (fNIRS) significantly improve 
the accuracy of motor intention decoding. For example, 
Kwak et al. proposed an fNIRS-guided attention network 
(FGANet) system that improved MI task accuracy 
by 4.0% and mental arithmetic performance by 2.7% 
compared to conventional models (37). Moreover, 
adaptive BCI systems utilizing AI can tailor task 
difficulty and feedback in real time. Zhang et al. found 
that such systems improved training efficiency and 
patient outcomes (38), highlighting the advantages of 
individualized rehabilitation.

2.2.6. Clinical validation and long-term outcomes

Despite promising results in laboratory settings, clinical 
evidence remains limited. A meta-analysis by Cervera et 
al. found that BCI interventions produced a standardized 
mean difference (SMD) of 0.79 in FMA for upper 
extremity (FMA-UE) scores, a result comparable to 
conventional therapies such as mirror therapy and CIMT 
(39). However, small sample sizes and a lack of long-
term follow-up limit generalizability. To address this 
gap, Wang et al. conducted a multicenter RCT involving 
296 stroke patients, comparing a BCI rehabilitation 
group with a conventional rehabilitation group (40). 
After one month, the BCI group showed significantly 
greater improvements in FMA-UE scores (13.17 vs. 9.83; 
between-group difference: 3.35; 95% CI: 1.05–5.65; P = 
0.0045). 

3. BCI-based cognitive and language rehabilitation

3.1. Mechanisms and applications in cognitive 
rehabilitation

Cognitive rehabilitation is a vital aspect of post-stroke 
recovery, and yet conventional methods often lack 
precision and have limited efficacy. In contrast, BCI 
technology offers the significant potential to enhance 
cognitive function in stroke patients, particularly through 
neurofeedback-based cognitive assessment and memory 
training (41). Studies suggest that BCI systems utilizing 
theta and alpha waves — key neural oscillations tied to 
memory encoding — can precisely control the timing of 
item presentation in memory tasks, leading to substantial 
improvements in memory performance (42,43).

3.1.1. Neural features of PSCI and EEG-based targeting

PSCI typically affects domains such as attention, 
memory, executive function, and language processing 
(44). These deficits typically arise from disrupted 
neural networks or functional impairments caused by 
brain damage. For example, dysfunction in the frontal 
and parietal lobes often leads to attention deficits and 
executive dysfunction, while hippocampal atrophy is 
strongly associated with memory decline.
 BCI systems offer dynamic assessment of these 
impairments by decoding EEG patterns and other neural 
markers. Research has shown that variations in beta/theta 
power correlate with attentional control, while alpha 
wave activity is linked to memory performance (45,46). 
By modulating these EEG patterns, BCI systems can 
target specific cognitive impairments, offering tailored 
therapeutic interventions that enhance recovery.

3.1.2. Neurofeedback and modulation strategies

Neurofeedback training serves as a cornerstone of BCI-
based cognitive rehabilitation, providing real-time 
feedback that allows patients to consciously regulate 
abnormal neural activity. Evidence suggests that this 
approach can improve attention and memory function 
in stroke populations (47). For example, neurofeedback 
interventions have resulted in measurable improvements 
in both short-term and long-term verbal memory in 
patients and healthy controls (48). A case study by 
Mroczkowska et al. demonstrated that adjusting the 
beta/theta ratio in the C3 cortical region significantly 
enhanced attentional control and information processing 
efficiency (43). Moreover, neurofeedback strategies 
targeting specific cognitive domains have yielded 
promising results. In one study, patients trained 
to increase beta power in the prefrontal cortex via 
neurofeedback showed significant improvements in 
executive function task performance (49). These findings 
highlight the promise of BCI-based neurofeedback in 
restoring cognitive function.

3.1.3. Role of VR and AI in adaptive cognitive training

The incorporation of VR into BCI-based cognitive 
rehabilitation enables the creation of immersive 
environments for ecologically valid cognitive training. 
By simulating real-world scenarios such as virtual 
shopping, navigation, and social interactions, VR enables 
patients to engage in practical cognitive exercises (50). 
A recent study found that a BCI-VR system significantly 
improved multitasking abilities and spatial memory (51). 
Pichiorri et al. further developed VR-based cognitive 
tasks within a BCI system, leading to enhanced attention 
control and working memory performance in stroke 
patients (33).
 In addition, integrating AI into BCI systems allows 
for dynamic adjustments to training protocols based 
on real-time patient feedback. Machine learning 
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algorithms can detect cognitive fatigue or plateau states 
by analyzing EEG patterns and dynamically modulate 
training intensity, thereby maximizing training efficiency 
(52). Despite these promising results, large-scale clinical 
trials need to be conducted to validate these technologies 
and expand their clinical applications.

3.2. Exploration of BCI-based language rehabilitation

Language impairment, a frequent and complex 
consequence of stroke, affects approximately 30% of 
patients during the acute phase, with many experiencing 
persistent deficits in comprehension or expression 
during long-term recovery (53-55). While conventional 
approaches such as speech-language therapy (SLT) 
and computer-assisted language training (CALT) offer 
some benefits, their effectiveness is often limited by 
low patient adherence, insufficient personalization, and 
marginal improvements (56). BCI technology offers a 
novel, targeted approach to address these challenges.

3.2.1. Characteristics of aphasia and BCIs applicability

Aphasia, a multifaceted neurological language disorder, 
impairs both expressive abilities (e.g., word retrieval and 
articulation) and comprehension (e.g., semantics and 
syntax). Its manifestations vary depending on the location 
of brain damage, with lesions in Brocas area typically 
linked to expressive aphasia and damage to Wernickes 
area associated with comprehension difficulties (57).
 BCI technology enhances rehabilitation by capturing 
and decoding neural signals related to language 
processing, providing real-time feedback to strengthen 
neural activity and connectivity. Both EEG and fNIRS 
have proven effective in detecting changes in neural 
activity within Brocas and Wernickes areas, providing 
a basis for designing individualized neurofeedback 
interventions (58).

3.2.2. Neurofeedback-based language rehabilitation

Neurofeedback training is a pivotal technique in BCI-
based language rehabilitation, enabling patients to 
monitor and regulate brain activity associated with 
language processing. For example, Mroczkowska et al. 
showed that modulating beta wave activity at the C3 
electrode site significantly improved word selection 
and generation in patients with expressive aphasia 
(43). Moreover, neurofeedback targeting relative alpha 
wave power in the occipital lobe yielded moderate 
improvements in naming, image and color recognition, 
sentence completion, and language fluency (59). In a 
10-session intervention, training to enhance the beta/theta 
ratio at the C3 EEG electrode site significantly improved 
speech fluency, word retrieval speed and accuracy, and 
comprehension of complex syntactic structures (43). 
However, the generalizability of these findings remains 

limited by small sample sizes and lack of a long-term 
follow-up. 

4. BCI-based emotional regulation and mental health 
interventions

4.1. Impact of post-stroke emotional disorders

Emotional disturbances such as post-stroke depression 
(PSD) and anxiety significantly affect rehabilitation 
outcomes by reducing motivation, adherence, and overall 
quality of life. Studies estimate that 25% to 50% of 
patients experience depression during the acute phase, 
with approximately 30% continuing to suffer in the 
chronic phase (60,61). Depression often manifests as 
negative thought patterns, diminished motivation, and 
social withdrawal, all of which indirectly impede the 
progress of rehabilitation. 
 Similarly, post-stroke anxiety (PSA) affects 18% 
to 34% of survivors within the first year, with rates 
remaining stable up to five years post-stroke (62-66). 
Patients with PSA frequently exhibit excessive worry 
about their prognosis, including fears of recurrence, 
returning to work, falling, or losing independence. 
This anxiety can exacerbate depression and cognitive 
impairment, further worsening outcomes (63).

4.2. Real-time emotional monitoring and closed-loop 
regulation techniques

BCI technology enables real-time monitoring of 
emotional states by decoding key brain activity features. 
EEG signals, and particularly alpha and beta waves, 
are widely studied in emotional regulation. Low alpha-
wave activity is typically linked to anxiety and tension, 
while high alpha-wave activity indicates relaxation 
and stability. Increased frontal midline theta power, 
conversely, correlates with positive emotions (67).
 To improve emotion detection accuracy, recent BCI 
models have integrated multimodal signals such as 
EEG, heart rate variability (HRV), and electrodermal 
activity (EDA). Reduced HRV is often indicative 
of psychological distress, while heightened EDA is 
associated with anxiety (68). This integrative approach 
provides a more comprehensive assessment of emotional 
dynamics. In addition to monitoring, BCI systems with 
affective closed-loop interactions show promise in 
emotional regulation. For example, participants have 
successfully modulated musical feedback by recalling 
emotionally salient memories, illustrating the potential 
of BCI-assisted emotional self-regulation (69). Closed-
loop systems can also detect negative emotions and 
trigger real-time interventions — such as mood-
regulating music, VR-based meditation environments, 
or neurofeedback training — to adjust EEG activity 
and restore emotional balance (70). Recent advances in 
AI and machine learning have significantly enhanced 
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the accuracy and efficiency of real-time EEG-based 
emotion recognition within BCI systems. Self-supervised 
learning models, which reduce the need for large labeled 
datasets, have shown promise in decoding affective 
states by learning internal signal representations 
through signal transformation tasks prior to fine-tuning 
for emotion classification (71). Similarly, deep 3D 
convolutional neural networks with multiscale kernels 
have demonstrated a high level of accuracy — up to 
95.67% on the DEAP dataset — by capturing complex 
spatiotemporal EEG patterns (72). Transformer-based 
architectures, known for their sequence modeling 
capabilities, have also emerged as powerful tools for 
EEG-based decoding of emotion, enabling more scalable 
and generalizable models for real-time applications (73).
 One proof-of-concept study integrated real-time 
fMRI-based neurofeedback (rtfMRI-NFB) with both 
musical stimuli and immersive virtual environments, 
demonstrating the feasibility of such multimodal closed-
loop systems. This interface employed both localized 
(region of interest, or ROI) and distributed (support 
vector machine, or SVM) neural activity analyses, 
enabling more precise detection and modulation of 
emotion-related brain states (70). The combination of 
BCI and VR technology offers particular advantages 
in managing emotional dysregulation. Through BCI-
mediated neurocognitive training, both the patient and 
the system help to modify neuronal activity, which 

can lead to significant reductions in anxiety-related 
symptoms (74). In one study, a VR scenario displaying 
calming landscapes (e.g., forests or oceans) was activated 
when anxiety was detected, significantly reducing 
anxiety scores and enhancing well-being (75). Similarly, 
SMR-BCI systems, which decode motor-related alpha 
and beta waves to control external devices like robots or 
exoskeletons, suggest broader applications in emotional 
rehabilitation (76). These findings highlight BCIs 
potential to deliver integrated, interactive, and patient-
centered mental health interventions post-stroke.

5. Discussion

In recent years, BCI technology has made remarkable 
progress in enhancing motor, cognitive, and emotional 
recovery following stroke. As an interdisciplinary tool 
integrating neuroscience, engineering, and AI, BCI has 
shown significant potential to reshape conventional 
neurorehabilitation paradigms (as illustrated in Figure 
2). By enabling real-time decoding of neural activity 
and providing personalized feedback, BCI-based 
interventions offer novel and precise rehabilitation 
strategies across multiple functional domains. Despite 
these promising developments, several technical and 
clinical challenges must be addressed to fully realize the 
clinical potential of BCI systems. One of the primary 
limitations is the accuracy and stability of signal 

Figure 2. A conceptual framework of brain-computer interface-driven neurorehabilitation in stroke.
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decoding. EEG-based motor intention signals are highly 
susceptible to noise and artifacts, which can compromise 
decoding reliability and reduce system responsiveness. 
Future research should prioritize the integration of 
multimodal data sources, such as EEG combined with 
fNIRS or fMRI, to enhance signal fidelity and improve 
the precision of motor intention and emotional state 
recognition.
 Another critical area where advances are needed is 
the personalization of rehabilitation protocols. Current 
BCI interventions often employ static, one-size-fits-all 
task models, which limit adaptability to individual patient 
profiles. The integration of AI and machine learning can 
address this issue by enabling real-time adaptation of 
training difficulty, feedback type, and task complexity 
based on patient performance and cognitive-emotional 
states. This approach can significantly improve training 
efficiency and patient engagement. In addition, the 
clinical translation of BCI systems remains hindered by 
practical limitations. Most current systems are confined 
to research or laboratory settings due to their complexity, 
bulkiness, and cost. To increase accessibility and 
facilitate home-based, long-term rehabilitation, wireless, 
lightweight, and cost-effective BCI devices need to be 
developed. Advances in wearable sensor technology and 
mobile computing may facilitate the design of portable, 
user-friendly BCI platforms suitable for continuous at-
home use.
 A major gap in the field is the lack of large-scale, 
multicenter RCTs to establish the long-term efficacy 
and safety of BCI interventions. Existing studies are 
often limited by small sample sizes, heterogeneous 
methodologies, and follow-up of an insufficient 
duration. Future research should focus on conducting 
well-designed clinical trials to evaluate both short- and 
long-term outcomes across diverse patient populations. 
Additionally, the development of standardized clinical 
guidelines and training protocols will be essential to 
the widespread adoption of BCI technology in routine 
rehabilitation practice.

6. Conclusion

In summary, BCI technology represents a transformative 
innovation in stroke rehabilitation, offering integrated 
and adaptive solutions for motor function recovery, 
cognitive enhancement, and emotional regulation. 
BCI technology currently has limitations, but ongoing 
advances in neuroscience, AI, VR, and wearable systems 
should help to further refine BCI platforms. In the future, 
BCI is poised to become a cornerstone of personalized, 
intelligent neurorehabilitation, providing stroke survivors 
with more effective, accessible, and holistic recovery 
pathways.
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