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1. Introduction

Machine learning (ML) is playing an increasingly 
important role in data processing in clinical care, 
showing great potential for improving patient prognosis 
and optimizing healthcare management. However, a 
data imbalance is prevalent in clinical healthcare data, 
which is mainly evidentin the uneven distribution of 
case samples, where the number of samples for common 
diseases far exceeds that for rare diseases. This imbalance 
may lead to bias in the construction of ML models, 
making the models tend to predict categories with a 
higher frequency of occurrence while ignoring categories 
with smaller sample sizes. This bias not only affects 
the recall and accuracy of the model, but also limits 

the effective application of conventional classification 
algorithms in disease diagnosis, and especially in 
healthcare domains that require precise identification of 
a small number of cases (1).
 An imbalance in clinical care data is a pervasive 
challenge in healthcare analytics, and especially for 
datasets with skewed class distributions. This issue 
presents significant hurdles in training classifiers for 
predictive modeling tasks, as highlighted by Kumar 
et al.(2). To address this, researchers have delved into 
a variety of solutions, with the Synthetic Minority 
Oversampling Technique (SMOTE) being a prominent 
one. SMOTE aims to enhance the predictive performance 
of ML models by rectifying class imbalances in clinical 
outcome prediction. In a pivotal study by Ishaq et al., 
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SUMMARY: This study investigates the use of machine learning (ML) models combined with a Synthetic Minority 
Over-sampling Technique (SMOTE) and its variants to predict perioperative pressure injuries (PIs) in an imbalanced 
dataset. PIs are a significant healthcare problem, often leading to prolonged hospitalization and increased medical costs. 
Conventional risk assessment scales are limited in their ability to predict PIs accurately, prompting the exploration 
of ML techniques to address this challenge.We utilized data from 7,292 patients admitted to a tertiary care hospital 
in Shanghai between May 2017 and July 2023, with a final dataset of 2,972 patients, including 158 with PIs. Seven 
ML algorithms—Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Extreme Gradient 
Boosting (XGBoost), Extra Trees (ET), K-Nearest Neighbors (KNN), and Decision Trees (DT)—were used in 
conjunction with SMOTE, SMOTE+ENN, Borderline-SMOTE, ADASYN, and GAN to balance the dataset and 
improve model performance.Results revealed significant improvements in model performance when SMOTE and 
its variants were used. For instance, the XGBoost model hadan AUC of 0.996 with SMOTE, compared to 0.800 on 
raw data. SMOTE+ENN and Borderline-SMOTE further enhanced the models' ability to identify minority classes. 
External validation indicatedthat XGBoost, RF, and ET exhibited the highest stability and accuracy, with XGBoost 
having an AUC of 0.977. SHAP analysis revealed that factors such as anesthesia grade, age, and serum albumin 
levels significantly influenced model predictions.In conclusion, integrating SMOTE with ML algorithms effectively 
addressed a data imbalance and improved the prediction of perioperative PIs. Future work should focus on refining 
SMOTE techniques and exploring their application to larger, multi-center datasets to enhance the generalizability of 
these findings, and especially for diseaseswith a lowincidence.
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the emphasis was on refining the survival prediction 
of heart failure patients through the useof SMOTE 
and sophisticated data mining. This studyuseda suite 
of nine classification models, underscoring the critical 
role of mitigating adata imbalanceto bolster the 
predictive accuracy of clinical datasets (3). Parallel 
to this, Goorbergh et al. conducted a case study on 
prediction modeling for ovarian cancer diagnosis. They 
scrutinized the repercussions of imbalance correction 
on the effectivenessof logistic regression models. Their 
findings underscored the potential detrimental effects of 
class imbalance corrections on risk prediction models, 
underscoring the necessity for judicious useof balancing 
techniques toanalyzeclinical data (4). Ridwan et al. 
usedML techniques and SMOTE to uncover patterns 
and risk factors within the Pima Indian diabetes dataset. 
By adeptly using SMOTE to detect diabetes, their study 
significantly advanced the scientific understandingof 
usingML algorithms to analyze clinical data (5). In 
a related vein, Javid et al.tackledthe issue of a class 
imbalance in the early diagnosis of Alzheimer's disease 
based on MRI images. They usedSMOTE to ensure 
an equitable distribution of samples across each class, 
thereby enhancing the performance of deep learning 
models in medical imaging data for disease diagnosis 
(6). This study highlightsthe significance of balancing 
techniques like SMOTE in increasing the effectiveness 
of deep learning models in this area.
 In summary, a data imbalance is a pervasive 
challenge in ML, and particularly in healthcare datasets 
where minority class samples (e.g., patients with 
pressure injuries, or PIs) are often critical for accurate 
predictions. Various methods of data enhancement 
have been developed to address this issue, each with its 
own strengths and limitations. One of the most widely 
used techniques is SMOTE, which generates synthetic 
samples by interpolating between existing minority class 
samples. While SMOTE has shown significant success 
in improving model performance, other methods such as 
Adaptive Synthetic Sampling (ADASYN), Borderline-
SMOTE, SMOTE+ENN (Edited Nearest Neighbors), 
and Generative Adversarial Networks(GAN) techniques 
have also emerged as promising alternatives. The current 
study aims to explore the effectiveness of these methods 
in predicting perioperative PIs and to compare their 
performance to conventional SMOTE.
 PIs, also known as pressure ulcers, are a common 
and serious healthcare problem worldwide, leading to 
prolonged hospitalization, poor quality of life, increased 
mortality, and higher medical costs. They are defined 
as localized injuries to the skin and underlying tissue, 
usually over a bony prominence, resulting from pressure 
or a combination of pressure and shear(7). Given the 
preventable nature of these injuries, there is a critical 
need for effective early warning models to assist 
clinicians and nurses in making timely predictions and 
taking preventive action. SMOTE is used to enhance 

the predictive power of the model by balancing the class 
distribution by adding a few class samples to the training 
data, thus improving the model's prediction accuracy for 
PIs (8,9).
 Conventional risk assessment scales (e.g., the 
Braden, Norton, and Waterlow scales) have been 
widely used but are limited in performance and 
are workload-intensive(10). As a result, artificial 
intelligence algorithms have been explored as they can 
capture patterns in complex data and have advantages 
in predicting time-to-event data, which is a common 
occurrence in clinical practice. ML models for predicting 
various medical outcomes, including PIs, have been 
developed by utilizing large datasets and algorithmic 
learning.
 Nowadays, there are a growing number of instances 
whereMLis used in medicine, but the small amount of 
data has been a limitation in the aspects related to disease 
prediction, so the main aimof the current study was to 
evaluate the usefulness and effectiveness of the various 
resampling techniques in the prediction of PIs.Thegoal is 
to construct a ML model that can effectively predict PIs 
in emergency patients. To achieve this goal, seven ML 
algorithms were used in combination with the SMOTE 
algorithm and related methodsof extension to deal with 
the data imbalance problem.

2. Materials and Methods

2.1. Model selection

SMOTE is a technique for dealing with imbalanced 
datasets by generating synthetic samples of a few 
classes to balance the category distribution and was 
first proposed by Chawla et al. in 2002. This method 
creates new sample points by interpolating between the 
minority class samples and their k-nearest neighbors, 
thereby increasing sample diversity and reducing the 
risk of overfitting(11). In the current study, the SMOTE 
algorithm was used to enhance the model's ability to 
recognize the minority category (i.e., patients with PIs).
 The basic steps of the underlying logic are as follows:
 i) Select a minority sample X as the "root sample"for 
synthesizing a new sample.
 ii) Find by Euclidean distance the k nearest 
neighboring samples (usually k is odd, e.g., 5) of that 
sample, which also belong to the minority category. 
For two points X("x1,y1,z1,...") and O("x2,y2,z2,...") 
coordinates in n-dimensional space, the Euclidean 
distance d between them can be calculated withthe 
following formula.

 iii) For each nearest-neighbor sample O, perform 
the following steps to generate a new sample point Onew. 
Calculate the root sample X and its nearest neighbor 
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by minority class samples), Danger (surrounded mostly 
by majority class samples and considered to be on the 
decision boundary), and Noise (surrounded entirely by 
majority class samples). Only Danger samples are used 
to create synthetic samples by selecting neighboring 
minority samples and interpolating between them 
using the same formula as SMOTE. There are two 
variants: Borderline-SMOTE1 generates synthetic 
samples using only minority class neighbors, whereas 
Borderline-SMOTE2 uses any neighbor (regardless of 
class) to introduce more diversity. The key advantage of 
Borderline-SMOTE is its focus on the decision boundary, 
which reduces the risk of generating noisy samples and 
enhances the effectiveness of synthetic samples (14).
 GANs are advanced generative models that use a 
generator network to create synthetic samples and a 
discriminator network to distinguish between real and 
synthetic samples. GANs can produce high-quality 
synthetic data, potentially improving model performance 
by increasing the diversity of the minority class(15).
 The current study used seven different ML models to 
predict PIs in emergency patients, each of which has its 
own unique strengths that make them perform well when 
dealing with specific types of data and problems.Support 
Vector Machine (SVM) is effective in dealing with high-
dimensional spatial data and non-linear problems, being 
able to find hyperplanes that maximize the class interval. 
In PI prediction, SVM can help  identify complex 
patterns, and especially when the feature space is 
large(16).Random Forest (RF), as an integrated learning 
method, improves the stability and accuracy of the 
model by constructing multiple decision trees and is very 
resistant to overfitting. When faced with imbalanced 
datasets, RF provides robust predictions and reduces 
the variance of predictions by integrating multiple 
models(17).Extreme Gradient Boosting (XGBoost) 
is an efficient gradient boosting framework that is 
capable of handling large-scale datasets and typically 

samples O: dif = O -X; generate a random number 
between [0, 1] λ: and Use this formula to synthesize the 
value of each attribute of the new sample Onew.

 iv) Repeat step 3 to produce the required number of 
new samples.
 The key to the SMOTE algorithm is that instead 
of simply copying existing minority class samples, it 
creates new sample points by interpolating between the 
minority class samples, which increases the diversity 
of the samples and reduces the risk of overfitting. This 
approach is particularly useful in situations where the 
number of minority samples is small but each sample 
is important.A basic diagram of SMOTE is shown in 
Figure 1.
 Similar to SMOTE, ADASYN generates synthetic 
samples but focuses more on the difficult-to-learn 
regions of the minority class, potentially improving 
model performance(12).
 SMOTE+ENN is a hybrid technique that combines 
SMOTE with the ENN technique to efficiently deal 
with imbalanced datasets. First, a large amount of 
oversampled data is generated using the SMOTE method 
described above, and then ENN is used to clean the 
dataset by removing noisy samples, ENN works by 
identifying samples whose nearest neighbors belong 
to a different class and removing them. This helps 
toreduce noise and improve the quality of the dataset. 
This approach helps reduce overfitting and enhances the 
model's generalization ability (13).
 Borderline-SMOTE is an enhanced version of 
SMOTE that generates synthetic samples specifically 
from minority class samples near the decision boundary 
to improve classification performance by targeting 
the most informative samples. Minority samples are 
categorized into three types: Safe (surrounded mostly 

Figure 1. The basic working principle of SMOTE. Modelling SMOTE workings using randomly generated data.
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outperforms conventional gradient boosting methods 
in terms of prediction performance. XGBoost performs 
well when dealing with datasets with a large number 
of features, which makes it suitable for extraction of 
key information from a large amount of patient datato 
predict PIs(18).Extra Trees (ET) is able to effectively 
deal with non-linear relationships and imbalanced 
datasets and improve the recognition of a few classes 
through its high stochasticity and integrated learning(17).
K-Nearest Neighbors (KNN) is a simple instance-based 
learning algorithm that does not require a training phase 
and can directly use training data for prediction. KNN 
performs well on small datasets, so it is suitable when 
the sample size is not particularly large, as in the current 
study, and especially when SMOTE processingis used 
(19).Logistic regression (LR) is a linear model that 
is suitable for binary classification problems and can 
provide a probabilistic interpretation of the prediction 
results. When predicting PIs, LR can provide a direct 
interpretation of the probability of a patient developing 
a pressure injury, which is useful for clinical decision-
making(20). Decision trees (DTs) are intuitive models 
that are easy to understand and interpret and can clearly 
demonstrate the relationship between features and target 
variables. DTs can help to identify the most important 
risk factors and can be used as a baseline for comparison 
to more complex models(17).
 In the current study, the main challenge faced was the 
problem of a data imbalance, i.e., the number of patients 
with PIs (positive sample) was much smaller than the 
number of patients without PIs (negative sample). To 
address this issue, the SMOTE algorithm was used to 
balance the dataset and the seven ML models described 
earlier were usedto construct predictive models. These 
models were chosen based on their extensive use and 
history of success in dealing with imbalanced datasets, 
handling high-dimensional data, providing predictive 
explanations, and in medical predictive modelling. 
Comparing the performance of these models enables 
the identification of the most appropriate model for the 
currentdata and problem, thereby improving the accuracy 
and reliability of predicting PIs. In addition, the diversity 
of these models allows evaluationand validation of 
predictions from different perspectives, ensuring that the 
findings are robust and reliable.

2.2. Participants

Data from a total of 7,292 patients consisting of7,171 
indicators were selected from all recorded inpatient data 
ata tertiary care hospital in Shanghai during the period 
from May 2017 to July 2023 (numerous interfering 
items in data during the COVID-19 epidemic were not 
selected), and a total of 549 patients with PIs (7.53%)
served as the initial screening subjects. After data 
processing, data from the remaining 2,972 patientsserved 
as the final data for this study and included 158patients 

with PIs (5.32%).

2.3. Data preprocessing

When dealing with the huge number of 7,171 feature 
variables, the XGBoost model was usedto identify the 
features that contribute most to the model performance.
The advantage of XGBoost is that it is able to filter the 
features efficiently when there are missing values in the 
data, enabling the initialselectionof the top 32 feature 
variables that have the greatest impact on the model. 
Through further in-depth analyses, those features that 
were not strongly associated with PIswere eliminated and 
27 key feature variables were ultimately selected, laying 
a solid foundation for building an accurate prediction 
model. In order to maintain the high quality of the dataset 
and reduce the noise interference in model training, a 
key decision was made to eliminate sets of data with 
more than 8 missing values among the 27 key feature 
variables. This strategy helps to maintain the integrity of 
the dataset while avoiding the uncertainty introduced by 
too many missing values, ensuring the reliability of the 
data and the stability of model training. After completing 
the screening of feature variables and the reduction of the 
dataset, in-depth data preprocessing was performedon 
the remaining data. This includes meticulous treatment 
of missing values, outliers, and duplicate records, steps 
that are critical to ensuring the quality of the data and the 
smooth running of subsequent experiments.
 Data preprocessing consisted mainly of the following: 
i) Categorical variables. Missing values for characteristic 
variables in the data involving categorical variables are 
uniformly filled in using plurality in the current study; 
ii) Continuous variables. Missing values for continuous 
variables in this study were filled in using the mean of 
the age groups. Age groups were every 10 years, and 0-9 
and10-19 were each averaged and populated within their 
age range.
 These comprehensive data preprocessing measures 
ensured the cleanliness and consistency of the dataset, 
providing a solid data foundation for subsequent model 
training and analysis.

2.4. Evaluation metrics

In the model training phase, the datasetwas divided into 
training and validation sets at a ratio of 7:3, and multiple 
ML models were used to predict whether PIs occurred in 
emergency patients. In the model evaluation phase, two 
key evaluation metrics were used: the Confusion Matrix 
and ROC_AUC.
 ROC curveswere also plotted and AUC values were 
calculated for each model; ROC curves demonstrate the 
model's performance under different thresholds, while 
AUC values quantify the model's ability to distinguish 
between positive and negative categories, with higher 
AUC values indicating better classification performance. 
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Finally, the confusion matrices and AUC values of 
the different modelswere compared to determine 
which model performed best in predicting PIs. This 
comprehensive assessment approach alloweda full 
understanding and comparison of the performance of 
each model in order to select the most appropriate model 
to aid inclinical decision-making.

2.5. Experimental design

The flow of this study is shown in Figure 2.

3. Results

3.1. Participants' characteristics

The distribution and comparison of several basic 
characteristics of patients with PIs (PI) and patients 
without PIs (Non-PI) is shown in Table 1. The table 
lists characteristics including sex, age, hypertension 
(HTN), hyperlipidemia, diabetes mellitus (DM), 
cardiovascular disease (CVD), history of malignancy, 
smoking status, drinking status, body temperature, 
pulse rate (PR), respiratory rate (RR), diastolic blood 
pressure (DBP), systolic blood pressure (SBP), body 
mass index (BMI), serum albumin, operating time, intra-
operative blood transfusion, intra-operative hypotension 
(IH), surgical position (thisrefers to the specific position 
of the patient during surgery. 1-3 are supine, prone, 
and lateral positions, respectively. 0 is an undefined 
position), surgical dressing, dressing site, anesthesia 
grade, method of anesthesia, oxygen saturation (SpO2), 

self-care competency grade, and blood glucose (BG). 
Categorical variables are expressed as the number 
(percentage) andcontinuous variables are expressed asthe 
mean (range). Comparison of these variables revealed 
significant differences in these characteristics between 
the two groups, with variables such as age, pulse rate, 
body mass index and method of anesthesia differing 
significantly between the two groups while variables 
such as sex, hypertension, and diabetes mellitus did not.
 Given that the original dataset is multidimensional, 
visually depicting the newly generated positive samples 
presents a challenge. To overcome this, all variables 
wereprojected onto a single axis, thereby facilitating a 
clear visualization of the samples created by the SMOTE 
algorithm. For further details, refer to Figure 3.
Data after different methods of enhancement are shown 
in Tables 2-6.

3.2. Comparison of ML-based models

In this study, the confusion matrix of the model after 
using SMOTE and its variants revealed significant 
improvements as shown in Table 7. For example, the 
SMOTE-enhanced XGBoost model hadextremely high 
TP and TN values in internal validation while minimizing 
FP and FN values, indicating that the model performed 
well in identifying a small class of samples (patients 
with PIs). In addition, methods such as SMOTE+ENN 
and Borderline-SMOTE, although slightly inferior to 
SMOTE in some models, further improved the model's 
ability to identify minority classes by optimizing the 
sample quality or focusing on the borderline region.

Figure 2. Flowchart for this study.
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ADASYN and GAN also showed good performance 
in the confusion matrix, although they may face some 
challenges withhigh-dimensional data.
 The analysis of the confusion matrix allows a more 
intuitive view of the impact of different methods of 
data enhancement on model performance. For example, 
SMOTE results in ahigh recall and precision in most 
models, while SMOTE+ENN performs well in removing 
noise, albeit possibly at the expense of some sample 

diversity.Borderline-SMOTE and ADASYN, in contrast, 
display better recognition of minority classes in specific 
models, although they have limited overall performance 
gains.GAN generated high-quality minority class 
samples, but its generated samples may be too close 
to the original samples, leading to an increased risk of 
overfitting.
 As can be seen from Table 8, the performance metrics 
(e.g., precision, recall, F1 score, accuracy, and AUC) of 

Table 1. Basic characteristics of patients

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,814)

 1,614 (57.4%)
   54 [0-98]

    420 (14.9%)
      12 (0.05%)

  114 (4.1%)
      4 (0.2%)
  116 (4.1%)

    280 (10.0%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [38-198]
     20 [10-78]

       75 [24-152]
     124 [47-277]
   21.7 [5.4-49]

     36.7 [16.5-59]
        2.90 [0.15-7.29]

  262 (9.3%)
  246 (8.7%)

0.8 [0-3]
 2,351 (83.5%)
    464 (16.5%)

2.3 [0-5]
 2,678 (95.2%)
       97 [65-100]

2.8 [1-3]
        7.9 [1.4-28.0]

PI (n=158)

      69 (43.6%)
   74 [0-94]

      26 (17.5%)
   0 (0%)

    14 (8.9%)
   0 (0%)

    14 (8.9%)
    13 (8.2%)
      1 (0.6%)

        36.6 [35.2-40.3]
       84 [52-165]
     18 [12-33]

       81 [54-134]
       135 [100-195]

        22.7 [12.8-41.6]
        32.9 [18.4-45.7]

          2.82 [0.25-10.02]
    12 (7.6%)
      6 (3.8%)

0.4 [0-3]
    125 (79.1%)
      33 (20.9%)

1.8 [0-5]
      26 (17.5%)
       96 [47-100]

2.9 [2-3]
        8.0 [3.8-17.6]

p value

   0.625 
< 0.001
   0.105 
   0.445 
   0.604 
   0.700 
   0.460 
   0.089 
   0.709 
   0.684 
   0.003 
   0.187 
   0.291 
   0.278 
< 0.001
   0.488 
   0.586 
   0.693 
   0.912 
   0.532 
   0.746 
   0.823 
   0.011 
< 0.001
   0.567 
   0.006 
   0.243 

Figure 3. Status of data generated by SMOTE.
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Table 2. Supplementary data-enhanced dataset - SMOTE

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,329 (59.0%)
   53 [0-98]

    329 (14.6%)
    11 (0.5%)
    91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
        7.9 [1.4-28.0]

PI (n=2,252)

    821 (36.5%)
   74 [0-94]

    778 (34.5%)
   0 (0%)

    39 (1.7%)
   0 (0%)

    22 (1.0%)
    32 (1.4%)

   0 (0%)
        36.5 [36.0-40.3]

       83 [52-165]
     18 [12-33]

       81 [56-134]
     135 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.76 [0.25-10.02]
    389 (17.3%)
    38 (1.7%)

0.4 [0-3]
 1,315 (58.4%)
  159 (7.1%)

3.2 [2-5]
 1,519 (67.5%)
       97 [65-100]

2.9 [2-3]
        7.9 [3.8-13.4]

p value

< 0.001
< 0.001
< 0.001
   0.011
< 0.001
   0.153
< 0.001
< 0.001
   0.515
   0.247
< 0.001
< 0.001
< 0.001
   0.604
< 0.001
   0.886
< 0.001
< 0.001
   0.017
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.003
< 0.001
   0.575

Table 3. Supplementary data-enhanced dataset - ADASYN

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

  1,311 (58.2%)
   54 [0-98]

    346 (15.3%)
      9 (0.4%)
    96 (4.3%)
      3 (0.1%)
  138 (6.1%)
  223 (9.9%)
      1 (0.1%)

        36.6 [35.9-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [47-277]
   21.7 [5.4-49]

        36.8 [16.5-59.0]
        2.89 [0.17-6.84]

  206 (9.1%)
  209 (9.3%)

0.8 [0-3]
 1,876 (83.3%)
    376 (16.7%)

2.8 [1-5]
 2,143 (95.2%)
       97 [71-100]

2.9 [1-3]
        7.9 [1.4-23.0]

PI (n=2,252)

    733 (32.5%)
   73 [0-94]
    64 (2.8%)

   0 (0%)
    36 (1.6%)

   0 (0%)
    34 (1.5%)
    33 (1.5%)

   0 (0%)
        36.6 [35.2-40.3]

       84 [52-165]
     18 [12-33]

       81 [54-134]
     134 [50-195]

        22.7 [12.8-41.6]
        33.0 [18.4-45.7]

          2.80 [0.25-10.02]
      41 (18.2%)
      2 (0.1%)

0.4 [0-3]
 1,433 (63.6%)
    95 (4.2%)

3.2 [2-5]
 1,660 (73.7%)
       97 [65-100]

2.9 [2-3]
        8.0 [3.8-17.6]

p value

< 0.001
< 0.001
< 0.001
   0.101
   0.109
   0.785
< 0.001
< 0.001
   0.305
   0.079
< 0.001
< 0.001
   0.001
   0.987
< 0.001
   0.119
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.002
< 0.001
   0.007
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Table 4. Supplementary data-enhanced dataset - GAN

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,290 (59.0%)
   55 [0-98]

    329 (14.6%)
     11 (0.5%)
     91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
       7.9 [1.4-28.0]

PI (n=2,252)

    821 (36.5%)
   74 [0-94]

    778 (34.5%)
   0 (0%)

    39 (1.7%)
   0 (0%)

    22 (1.0%)
    32 (1.4%)

   0 (0%)
        36.5 [36.0-40.3]

       83 [52-165]
     18 [12-33]

       81 [56-134]
     135 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.76 [0.25-10.02]
    389 (17.3%)
    38 (1.7%)

0.4 [0-3]
 1,315 (58.4%)
  159 (7.1%)

3.2 [2-5]
 1,519 (67.5%)
       97 [65-100]

2.9 [2-3]
       7.9 [3.8-13.4]

p value

   0.715
< 0.001
   0.077
   0.396
   0.023
   0.500
   0.302
   0.173
   0.166
   0.687
< 0.001
   0.199
   0.412
   0.322
< 0.001
   0.649
   0.026
   0.919
   0.371
   0.121
   0.187
   0.056
< 0.001
< 0.001
< 0.001
   0.002
   0.447

Table 5. Supplementary data-enhanced dataset - SMOTE + ENN

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,329 (59.0%)
   53 [0-98]

    329 (14.6%)
    11 (0.5%)
    91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
        7.9 [1.4-28.0]

PI (n=2,252)

    809 (35.9%)
   74 [0-94]
    89 (4.0%)

   0 (0%)
    30 (1.3%)

   0 (0%)
    31 (1.4%)
    32 (1.4%)

   0 (0%)
        36.5 [36.0-40.3]

       83 [52-165]
     18 [12-33]

       81 [56-134]
     134 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.76 [0.25-10.02]
    16 (0.7%)
      1 (0.1%)

0.3 [0-3]
 1,335 (59.3%)
  150 (6.7%)

3.2 [2-5]
 1,555 (69.0%)
       97 [65-100]

2.9 [2-3]
        7.9 [3.8-13.4]

p value

< 0.001
< 0.001
< 0.001
   0.489
   0.103
   0.360
< 0.001
< 0.001
   0.267
   0.586
< 0.001
< 0.001
   0.003
   0.979
< 0.001
   0.451
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.845
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all ML models improvedsignificantly after using SMOTE 
and its variants (e.g., SMOTE+ENN, Borderline-
SMOTE). For example, XGBoost improved its AUC 
value from 0.800 to 0.996 after using SMOTE, showing 
that methods of data enhancement play an important role 
in improving the model's ability to recognize a small 
number of classes.
 Figure 4 shows the ROC analyses of the ML models 
under different conditions: (A) based on raw data, (B) 
based on SMOTE, (C) based on SMOTE+ENN, (D) 
based on Borderline-SMOTE, (E) based on GAN, and 

(F) based on ADASYN. These curves demonstrate the 
models' performance under various thresholds, with 
higher AUC values indicating better classification 
performance. The results clearly indicate that the 
models using SMOTE and its variants hadsignificantly 
higher AUC values compared to those using raw data, 
highlighting the effectiveness of these techniques in 
addressing a data imbalance.
 When dealing with imbalanced data, SMOTE 
generates minority class samples by interpolation, which 
effectively increases sample diversity but may introduce 
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Table 6. Supplementary data-enhanced dataset - Borderline-SMOTE

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=2,252)

 1,329 (59.0%)
   53 [0-98]

    329 (14.6%)
    11 (0.5%)
    91 (4.0%)
      4 (0.2%)
  127 (5.6%)

    230 (10.2%)
      2 (0.1%)

        36.6 [35.3-40.7]
       88 [18-198]
     20 [10-78]

       75 [24-152]
     124 [53-277]
   21.6 [7.2-49]

        36.8 [16.5-53.9]
        2.89 [0.15-6.84]

  222 (9.9%)
  198 (8.8%)

0.8 [0-3]
 1,888 (83.8%)
    364 (16.2%)

2.8 [1-5]
 2,145 (95.2%)
       97 [76-100]

2.9 [1-3]
        7.9 [1.4-28.0]

PI (n=2,252)

    701 (31.1%)
   79 [0-94]

    773 (34.3%)
   0 (0%)

    53 (2.4%)
   0 (0%)

    11 (0.5%)
    12 (0.5%)

   0 (0%)
        36.6 [36.0-40.3]

       84 [52-165]
     18 [12-33]

       83 [56-134]
     138 [50-195]

        22.7 [12.8-41.6]
        33.2 [18.4-45.7]

          2.49 [0.25-10.02]
    372 (16.5%)
    39 (1.7%)

0.3 [0-3]
 1,168 (51.9%)
  172 (7.6%)

3.2 [2-5]
 1,466 (65.1%)
       97 [65-100]

2.9 [2-3]
        7.9 [3.8-13.4]

p value

< 0.001
< 0.001
< 0.001
   0.014
   0.001
   0.061
< 0.001
< 0.001
   0.985
   0.718
< 0.001
< 0.001
< 0.001
   0.005
< 0.001
   0.034
   0.137
< 0.001
   0.468
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
   0.151
   0.001
   0.969

Table 7. Confusion matrix for each model (TN/FP/FN/TP)

Model

SVM
LR
RF
ET
KNN
DT
XGBoost

Model

SVM
LR
RF
ET
KNN
DT
XGBoost

RAW Data

2814/0/158/0
2802/12/151/7
2812/2/157/1
2813/1/157/1
2787/27/153/5

2655/159/123/35
2780/34/147/11

SMOTE+ENN

1477/775/461/1791
1938/314/367/1885
2184/68/57/2195
2182/70/56/2196
1767/485/28/2224
2059/193/114/2138
2195/57/83/2169

SMOTE

1477/775/461/1791
1938/314/367/1885
2184/68/57/2195
2182/70/56/2196
1767/485/28/2224
2059/193/114/2138
2195/57/83/2169

ADASYN

1415/837/421/1831
1916/336/369/1883
2168/84/76/2176
2147/105/89/2163
1734/518/21/2231
2019/233/149/2103
2181/71/84/2168

Borderline-SMOTE

1683/569/250/2002
1995/257/292/1960
2203/49/80/2172
2199/53/76/2176
1909/343/38/2214
2067/185/113/2139
2189/63/86/2166

GAN

2252/0/341/1911
2237/15/302/1950
2242/10/83/2169
2238/14/87/2165
2218/34/75/2177

2102/150/124/2128
2192/60/89/2163
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noise near boundary samples. Nevertheless, SMOTE 
performs well in most models, and especially in XGBoost 
and Random Forest (RF), with an AUC value close to 
1, indicating strong classification ability.SMOTE+ENN 
combines the undersampling techniques of SMOTE and 
ENN, which aim to remove noisy samples and further 
optimize the quality of the minority class samples. 
Although its performance is slightly inferior to SMOTE 
in most models, its performance is close in some models 
(e.g., KNN), suggesting that it is effective in removing 
noise but may have sacrificed some of the sample 
diversity.Borderline-SMOTE focuses on generating 
samples near the category boundaries, which helps to 

improve the model's ability to discriminate between 
the boundary regions, but has limited performance 
improvement in most models and with high-dimensional 
data, the definition of boundary samples may not be clear 
enough, limiting its effectiveness.ADASYN is similar to 
SMOTE, but focuses more on the hard-to-learn regions 
of the minority class samples and improves the model 
performance through adaptive sampling.ADASYN 
performs well in some models (e.g., XGBoost), but 
the overall performance is slightly lower than that of 
SMOTE, probably because the way it generates samples 
relies more on the local distribution of the minority class 
samples.GAN, as a state-of-the-art generative adversarial 
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Table 8. Model performance comparison

Models

Raw data
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
SMOTE
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
SMOTE+ENN
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
Borderline-SMOTE
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
ADASYN
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost
GAN
     SVM
     LR
     RF
     ET
     KNN
     DT
     XGBoost

Precision

0.000 
0.350 
0.200 
0.100 
0.065 
0.151 
0.290 

0.695
0.846
0.975
0.974
0.832
0.918
0.975

0.701 
0.858 
0.974 
0.972 
0.826 
0.917 
0.982 

0.782 
0.884 
0.978 
0.984 
0.872 
0.927 
0.974 

0.690 
0.834 
0.957 
0.949 
0.813 
0.881 
0.958 

1.000 
0.993 
0.995 
0.994 
0.985 
0.933 
0.975 

Recall

0.000 
0.025 
0.012 
0.006 
0.026 
0.165 
0.082 

0.794
0.816
0.982
0.974
0.991
0.95
0.964

0.786 
0.835 
0.978 
0.974 
0.986 
0.946 
0.961 

0.887 
0.871 
0.964 
0.971 
0.985 
0.955 
0.960 

0.783 
0.818 
0.924 
0.907 
0.934 
0.876 
0.944 

0.930 
0.930 
0.930 
0.930 
0.930 
0.930 
0.930 

F1-score

0.000 
0.046 
0.023 
0.012 
0.037 
0.152 
0.124 

0.741
0.829
0.977
0.973
0.904
0.932
0.966

0.741 
0.844 
0.975 
0.972 
0.899 
0.930 
0.967 

0.831 
0.875 
0.968 
0.975 
0.925 
0.938 
0.963 

0.729 
0.824 
0.939 
0.927 
0.869 
0.878 
0.949 

0.958 
0.954 
0.955 
0.955 
0.950 
0.922 
0.945 

Accuracy

0.947 
0.947 
0.946 
0.947 
0.939 
0.898 
0.938 

0.723
0.834
0.978
0.974
0.895
0.932
0.969

0.725 
0.849 
0.976 
0.973 
0.889 
0.930 
0.971 

0.820 
0.879 
0.971 
0.977 
0.921 
0.940 
0.968 

0.715 
0.827 
0.941 
0.930 
0.859 
0.879 
0.951 

0.965 
0.962 
0.963 
0.962 
0.957 
0.928 
0.952 

AUC

0.565
0.781
0.795
0.786
0.649
0.573
0.800

0.805
0.919
0.998
0.996
0.961
0.930
0.996

0.802
0.925
0.997 
0.996 
0.957
0.932
0.993

0.879
0.949
0.992
0.992 
0.969 
0.938
0.989

0.791 
0.930 
0.995 
0.993 
0.957 
0.921 
0.994

0.933 
0.932 
0.939 
0.939 
0.957
0.927 
0.951
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network, generates high-quality minority class samples 
through the adversarial training of generators and 
discriminators. It performs well in some models, but its 
computational cost is high and it may face the problem of 
unstable training with high-dimensional data. In addition, 
the samples generated by GANs may be too close to the 

original samples, increasing the risk of overfitting.
 In conclusion, methods of data enhancement, and 
especially SMOTE and its variants, have significant 
effects on improving the performance of models. In 
practical use, the most appropriate methods of data 
enhancement can be selected dependingto the specific 

(183)

Figure 4. ROC analyses of applied machine learning models.(A) based on raw data, (B) based on SMOTE, (C) based on SMOTE+ENN, (D) 
based on Borderline-SMOTE, (E) based on GAN, (F) based on ADASYN.
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problems and models. These methods effectively 
improve the performance of the model withimbalanced 
datasets by increasing the number and diversity of 
samples, which improves the precision, recall, and 
overall classification performance of the model.

3.3. Validation and interpretability

Table 9 shows the five-fold cross-validation of SMOTE-

based processed data.After comparing the performance 
of the model in 5-fold cross-validation and the original 
dataset, RF and XGBoost displayed the great stability 
and consistency in both methods of evaluation, with 
an AUC value close to 1, indicating its excellent 
generalization ability across different datasets.
 In order to prevent possible overfitting after SMOTE 
processing and to test the generalization ability of the 
model, external validation of the constructed modelwas 
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Table 9. Fifty-fold cross-validation of the models

Models

SVM
LR
RF
ET
KNN
DT
XGBoost

Precision

0.695 (0.664 - 0.721)
0.846 (0.777 - 0.854)
0.975 (0.925 - 0.990)
0.974 (0.929 - 0.990)
0.832 (0.724 - 0.888)
0.918 (0.868 - 0.949)
0.975 (0.938 - 0.985)

Recall

0.794 (0.772 - 0.823)
0.816 (0.584 - 0.894)
0.982 (0.857 - 1.000)
0.974 (0.798 - 1.000)
0.991 (0.860 - 1.000)
0.950 (0.766 - 0.970)
0.964 (0.660 - 1.000)

F1-score

0.741 (0.729 - 0.763)
0.829 (0.666 - 0.872)
0.977 (0.958 - 0.987)
0.973 (0.879 - 0.990)
0.904 (0.729 - 0.940)
0.932 (0.848 - 0.949)
0.966 (0.790 - 0.987)

Accuracy

0.723 (0.700 - 0.744)
0.834 (0.709 - 0.856)
0.978 (0.922 - 0.992)
0.974 (0.892 - 0.990)
0.895 (0.819 - 0.914)
0.932 (0.863 - 0.949)
0.969 (0.825 - 0.995)

AUC

0.805 (0.788 - 0.831)
0.919 (0.802 - 0.952)
0.998 (0.997 - 1.000)
0.996 (0.968 - 1.000)
0.961 (0.932 - 0.971)
0.932 (0.863 - 0.949)
0.997 (0.975 - 1.000)

Table 10. External validation dataset distribution

Variables

Sex, n (%)
Age, years
Hypertension (HTN), n (%)
Hyperlipidemia, n (%)
Diabetes Mellitus (DM), n (%)
Cardiovascular Disease (CVD), n (%)
History of Malignant Tumor, n (%)
Smoking Status, n (%)
Alcohol Consumption Status, n (%)
Body Temperature, °C
Pulse Rate (PR), bpm
Respiratory Rate (RR), bpm
Diastolic Blood Pressure (DBP), mmHg
Systolic Blood Pressure (SBP), mmHg
Body Mass Index (BMI), kg/m²
Serum Albumin, g/L
Operating Time, h
Intraoperative Blood Transfusion, n (%)
Intraoperative Hypotension (IH), n (%)
Surgical Position
Surgical Dressing, n (%)
Dressing Site, n (%)
Anesthesia Grade
Anesthesia Method, n (%)
Oxygen Saturation (SpO2), %
Self-Care Ability Grade
Blood Glucose (BG)

Non-PI (n=277)

    160 (57.7%)
   53 [0-91]

    244 (88.1%)
    276 (99.6%)
    13 (4.7%)
      1 (0.4%)
    11 (4.0%)

      28 (10.1%)
      1 (0.4%)

        36.6 [35.9-38.4]
       88 [38-170]

     20 [11-70]
       75 [30-113]
     123 [57-190]
     21.5 [11.1-49]

        37.1 [18.6-34.3]
        2.89 [0.17-6.43]

    256 (92.4%)
    248 (89.5%)

0.8 [0-3]
    233 (84.1%)
      44 (15.9%)

2.8 [1-5]
    263 (94.9%)
       97 [76-100]

2.9 [2-3]
        7.9 [2.6-23.0]

PI (n=277)

     192 (68.6%)
    73 [2-94]

     173 (62.4%)
       277 (100.0%)

       8 (2.9%)
    0 (0%)

       2 (0.7%)
      4 (1.4%)

   0 (0%)
        36.5 [36.0-39.7]

       82 [53-150]
     18 [12-32]

       81 [56-120]
     133 [86-194]

        22.7 [13.9-29.9]
        33.1 [20.0-42.8]
        2.78 [0.37-9.71]

    230 (83.0%)
    270 (97.5%)

0.3 [0-3]
    156 (56.3%)
    15 (5.4%)

3.1 [2-5]
    195 (70.4%)
       96 [67-100]

2.9 [2-3]
        7.9 [3.8-12.9]

p value

   0.004
< 0.001
< 0.001
   0.751
   0.037
   0.266
   0.084
   0.067
   0.481
   0.599
   0.044
   0.058
   0.012
   0.133
   0.090
   0.401
< 0.001
   0.004
   0.423
< 0.001
< 0.001
< 0.001
   0.541
   0.001
   0.442
   0.206
   0.655

Table 11. Performance of each model under external validation

Models

SVM
LR
RF
ET
KNN
DT
XGBoost

Precision

0.731 
0.825 
0.939 
0.940 
0.872 
0.942 
0.977 

Recall

0.733 
0.829 
0.945 
0.947 
0.872 
0.948 
0.978 

F1-score

0.731 
0.825 
0.939 
0.940 
0.872 
0.942 
0.977 

Accuracy

0.731 
0.824 
0.938 
0.940 
0.872 
0.942 
0.977 

AUC

0.731 
0.825 
0.939 
0.940 
0.872 
0.942 
0.977 
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attempted, but since the original amount of data was 
very small and had already been internally validated, 
cutting the data inside for external validation would 
have affected the performance of the original model, 
so the missing values that had been excluded from the 
original set of 9-14 data strips were used on a 1:1 basis. 
Positive and negative sampleswere selected in the order 
of missing values, and the missing values were added 
according to the data filling method in the previous 
section to serve as the external validation set. The data 
distribution of the external validation set is shown in 
Table 10, and the external validation results are shown in 
Table 11.
 Based onthe external validation data, the precision, 
recall, F1 score, accuracy and AUC values of all models 
are very close to each other, indicatinga high degree of 
consistency in the performance of the models on the new 
dataset. The XGBoost model performed best in external 
validation, with a precision, recall, F1 score, accuracy 
and AUC value of 0.977, which is close to perfect, 
indicating excellent generalizability and prediction 
performance.
 Combining the results of internal cross-validation 
and external validation, XGBoost, Random Forest 
(RF), and Extra Trees (ET) performed the best in 
terms of performance and stability. These models not 

only displayed low variability and high stability in 
internal cross-validation but also exhibited extremely 
high accuracy and AUC values in external validation, 
indicating their excellent generalizability. Especially, 
XGBoost, with its near-perfect external validation 
results, is the best choice among all models.
 In response to the pervasive black-box problem 
of ML, SHAP (SHapley Additive exPlanations)has 
been introduced to increase the interpretability of the 
model. The scatterplot of SHAP values reveals the 
extent to which different features contribute to the 
predicted results of a ML model. Each point in the 
graph represents the SHAP value of a sample, which 
measures the contribution of a particular feature to the 
model output. The color gradient goes from blue to red, 
representing low to high feature values, respectively. 
Figure 5 shows that Anesthesia Grade has a significant 
effect on the model output. A high Anesthesia Grade 
(red points) is generally located on the right side of 
the graph, which indicates that it tends to increase the 
predictive value of the model when the Anesthesia Grade 
is high. Conversely, low anesthesia levels (blue points) 
tend to decrease the predicted value of the model, and 
most of these points are located on the left side of the 
graph. Age is also a key factor that has a broad impact on 
model predictions. Older people (red dots) tend to have 
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Figure 6. SHAP dependency plot.

Figure 5. SHAP Summary plot of key factors.
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positive SHAP values, implying that an increase in age 
may improve the model's predictions. In contrast, SHAP 
values for younger people (blue dots) tend to be negative, 
suggesting that a younger age may decrease model 
predictions. Serum albumin levels also had a significant 
impact on model predictions. Samples with high serum 
albumin levels (red dots) tend to have negative SHAP 
values in the graph, which could mean that higher serum 
albumin levels are associated with lower predictions 
in the model. Low serum albumin levels (blue dots), 
in contrast, are associated with positive SHAP values, 
suggesting that lower serum albumin levels may improve 
the predictive value of the model. The corresponding 
SHAP values when the variable of interest is a particular 
value are shown in Figure 6.

4. Discussion

The SMOTE algorithm yielded significant results 
whendealing with a data imbalance, but there are some 
potential limitations and risks. First, SMOTE may 
introduce noise, and especially when noise or outliers 
are present in a few class samples, and the synthesized 
samples may also contain that noise, affecting the 
model performance. Second, SMOTE is sensitive to the 
choice of parameter k (number of nearest neighbors), 
and improper values for k may lead to overfitting or 
the introduction of excessively noisy data. In addition, 
SMOTE is computationally expensive, and especially 
when dealing with large-scale datasets, and calculating 
the k nearest neighbors can be very time-consuming. 
More importantly, SMOTE increases the number of 
samples in a few classes by synthesizing samples that 
may be too close to the original samples, increasing the 
risk of overfitting and reducing the generalizability of the 
model. Finally, SMOTE may introduce noise or produce 
unrealistic data points when generating new samples 
near the boundary samples, affecting the classification 
effectiveness of the model.
 SMOTEhas been widely used to address the issue of 
imbalanced class distribution in various ML applications. 
Sáez et al. introduced SMOTE-IPF, a re-sampling 
method with filtering, to tackle the problem of noisy and 
borderline examples in imbalanced classification(21). 
Rastogi et al. focused on implementing SMOTE in 
a distributed environment under Spark, highlighting 
the importance of applyingSMOTE to big data 
classification(22). Bao et al.integrated SMOTE 
with KNN and long short-term memory networks 
(LSTMs) to detect anomalies in high-dimensional and 
imbalanced data(23). Hemalatha et al. proposed FG-
SMOTE, a fuzzy-based Gaussian synthetic minority 
oversampling algorithm, to handle imbalanced data 
and improve classifier performance(24). However, that 
study identified limitations such as the need to apply 
FG-SMOTE to multiclass imbalanced datasets and 
to evaluate theproblem of imbalancein a distributed 

environment. Mukherjee et al. introduced SMOTE-ENC, 
a novel SMOTE-based method for generating synthetic 
data with both nominal and continuous features(25). That 
study found that SMOTE-ENC outperformed SMOTE-
NC in datasets with a substantial number of nominal 
features and associations between categorical features 
and the target class. Xia et al. proposed GBSMOTE, a 
sampling method based on granular-ball computing and 
SMOTE, to address the limitations of SMOTE such as 
noisy generated samples and boundary blurring(26). In 
the context of specific applications, Ismail etal. combined 
oversampling and undersampling techniques in SMOTE-
RUS to classify imbalanced autism spectrum disorder 
datasets effectively(27). Nazarudin et al.usedsynthetic 
data generation techniques, including SMOTE and GAN-
SMOTE, to train ML models to predictTenaga Nasional 
Berhad stock price movements(28). Overall, SMOTE 
has been a valuable tool in addressing a class imbalance, 
but studies have identified its limitations such as noisy 
samples, boundary blurring, and challenges in handling 
multiclass datasets and distributed environments. Future 
research may focus on enhancing SMOTE algorithms 
to overcome these limitations and improve their 
effectiveness in various applications.
 To address these limitations and risks, future work 
can explore several directions. First, improved versions 
of SMOTE, such as Borderline-SMOTE or ADASYN, 
can be investigated and developed to improve the 
performance and stability of the algorithm through 
different strategies ofselecting the original samples 
used for generating new samples or adjusting the way 
in which new samples are generated. Second, the 
SMOTE algorithm can be used in conjunction with 
other techniques (e.g., undersampling and integrated 
learning) to further improve the performance of the 
model. For example, the SMOTE algorithm can be used 
to oversample a small number of classes first, and then 
integrated learning methods can be used to train multiple 
models and obtain the final prediction results by voting 
or averaging. In addition, suitable evaluation metrics 
need to be used to assess the performance of the models, 
and especially withimbalanced datasets, where metrics 
such as recall and F1 scores often reflect the actual 
performance of the models better than accuracy. New 
learning algorithms designed specifically for imbalanced 
data can also be developedto improve the recognition of 
minority classes by adjusting sample weights or other 
mechanisms without increasing the number of samples. 
Finally, with the advent of the big data era, the useof 
SMOTEin big data environments can beexploredto 
address the challenges posed by the expanded size of 
data, such as computational efficiency and storage issues, 
is also an important direction for future work. Through 
these efforts, we can address the problem of a data 
imbalance more effectively and improve the predictive 
performance and generalization ability of the model.
 This study had several limitations.First,the total 
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number of samples is still somewhat small relative to 
ML, so the model performance after SMOTE is bound to 
have overfitting to a certain extent. With the subsequent 
supplementation of the external validation set, there is 
also a certain amount of contamination of the training 
data. Second, based on data from only one hospital, the 
population is affected by the geographic area and may 
not necessarily be generalizable to other geographic 
areas.Further research will be conducted based on these 
issues in conjunction with multiple hospitals.

5. Conclusion

This study underscores the significance of usingML 
models to address the challenge of data imbalances 
in the prediction of perioperative PIs. The integration 
of synthetic minority oversampling techniques, and 
particularly SMOTE, with ML algorithms has been 
found to markedly enhance predictive accuracy, and 
especially in scenarios with few positive samples. The 
useof SMOTE and its variants, such as SMOTE+ENN 
and Borderline-SMOTE, has been shown to bolster the 
model's capacity to recognize minority classes, leading to 
more nuanced predictive modeling for PIs in emergency 
patient populations.
 Among the seven ML models assessed, the 
combination of XGBoost with SMOTE emerged as 
the most effective, withan internally validated AUC of 
0.996 and an externally validated AUC of 0.977. This 
result underscores the superior discriminative power 
of the XGBoost model when combined with SMOTE, 
outperforming other models across various metrics 
including precision, recall, F1 score, and accuracy. This 
study not only highlights the clinical utility of ML models 
augmented with SMOTE technology in predicting PIs 
but also underscores the importance of controlling a data 
imbalance toenhance the predictive value of ML models 
in healthcare settings. The findings suggest that the 
synergy of SMOTE with ML algorithms presents a viable 
strategy for mitigating the limitations of conventional 
risk assessment tools and dealing with the inherent data 
imbalances present in healthcare data. Future research 
is warranted to refine SMOTE techniques, explore their 
integration with other methodologies, and develop novel 
algorithms tailored for imbalanced datasets, thereby 
improving the reliability and accuracy of ML models in 
healthcare.
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