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1. Introduction

Colorectal cancer (CRC) is among the most prevalent 
malignancies globally, with over 50% of patients 
eventually developing colorectal liver metastasis (CRLM) 
(1,2). The high incidence of CRLM and its pivotal role in 
degrading patient survival underscores the importance of 
early and accurate classification within this population. 
Precise classification of CRLM serves as a cornerstone 
for optimizing therapeutic strategies. Moreover, it plays a 
pivotal role in predicting treatment responses and patient 
outcomes, thereby enabling more personalized and 
effective clinical management (3).
 Conventional classification methods, such as 
histopathological analysis, imaging evaluation, and 
clinical risk scoring (CRS), while valuable, have notable 
limitations, including subjectivity, time spent, and 
dependency on expert interpretation (4). In contrast, 
artificial intelligence (AI) offers the potential for 
automated, efficient, and scalable classification, 
addressing the constraints of conventional approaches. 
AI excels in handling multimodal data, integrating 

information from imaging, genomics, and clinical 
parameters to enhance the accuracy of classification 
models (5,6).
 This review provides a comprehensive overview 
of the role of machine learning (ML) in CRLM 
classification, focusing on current methodologies, data 
applications, and future directions. Specifically, the 
discussion covers established classification frameworks 
for CRLM, including intrapatient stratification (e.g. 
sensitivity to treatment) and interpatient subgrouping (e.g. 
distinguishing CRLM from liver metastases of non-CRC 
origins). By integrating AI advances in clinical use, this 
review aims to highlight the transformative potential of 
AI in CRLM management, promoting the advancement 
of precision medicine in oncology.

2. The concept of integrating AI into CRLM 
classification

In clinical practice, metastatic liver cancer staging 
primarily relies on the TNM system established by 
the AJCC in 2017, which classifies cancer based on 
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tumor invasion, lymph node involvement, and distant 
metastases. However, growing evidence suggests that 
this pathological classification often fails to fully reflect 
patient heterogeneity at specific stages. For example, 
with current advances in medical care, many patients 
classified as having advanced-stage disease under the 
TNM system still demonstrate the potential for long-
term survival (7). Consequently, clinical guidelines are 
increasingly reevaluating its role in determining surgical 
indications.
 A more comprehensive and precise staging system is 
urgently needed to guide personalized cancer treatment. 
Advances in AI, multi-omics sequencing, and clinical 
data integration are enabling more accurate and efficient 
classification models. ML-based systems outperform 
conventional methods in predicting treatment responses 
and prognoses, while AI-driven clinical decision support 
systems (CDSS) are transforming oncology care. This 
review aims to explore and validate these emerging 
possibilities (Figure 1)

2.1 Current methods of clinical classification of CRLM

2.1.1. Histopathological classification (HGP)

As early as 2001, Vermeulen et al. identified three 
histopathological growth patterns (HGPs) in HE-stained 
sections of CRLM: desmoplastic (dHGP), pushing 
(pHGP), and replacement (rHGP) (8). In dHGP, the 
metastatic lesion is separated from the liver parenchyma 
by a stromal layer, with tumor cells infiltrating the matrix 
but not directly contacting hepatocytes. In pHGP, only 

a thin reticulin fiber layer separates tumor cells from 
hepatocytes, with metastatic lesions compressing and 
displacing hepatic plates. Unlike these patterns, rHGP 
preserves liver architecture, as tumor cells replace 
hepatocytes within hepatic plates while maintaining 
direct contact with normal hepatocytes. Notably, pHGP 
exhibits a higher ratio of proliferative endothelial cells 
compared to the other two (9).
 Studies have demonstrated that different HGP 
patterns have a significant impact on patient prognosis. 
For instance, pHGP is associated with poorer survival 
outcomes (10), whereas dHGP correlates with better 
survival (11,12). Moreover, HGP classification also 
aids in developing various clinical strategies. As an 
example, Lazaris et al. demonstrated that bevacizumab 
is more effective in treating dHGP-type CRLM with 
abundant angiogenesis compared to rHGP-type CRLM 
(13). However, despite being a valuable classification 
system, HGPs has several limitations. For example, 
the growth patterns of tumor tissues may be altered 
by chemotherapy, and the classification still relies on 
postoperative histological analysis of tissue sections.

2.1.2. MMR/MSI classification

The DNA mismatch repair (MMR) system plays a 
critical role in correcting base mismatches or insertion/
deletion errors that occur during DNA replication, 
and it was first identified as being associated with the 
progression of CRC (14). Defects in the MMR system 
led to the microsatellite instability (MSI) phenotype, also 
known as deficient MMR (dMMR). Based on the MMR/
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Figure 1. AI-driven Framework for Precision Oncology in Colorectal Cancer Liver Metastases. This figure depicts the integration of 
sequence data, imaging, and structured data with AI models to enhance tasks such as tumor classification, molecular subtyping, mutation 
prediction, and evaluation of treatment response. Central to this workflow is the use of advanced machine learning and deep learning techniques 
to facilitate personalized clinical decision-making.
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combinations available at the time. However, despite 
its pivotal role in clinical practice over the years, an 
increasing number of studies have sought to enhance 
the predictive power of the CRS system. This is being 
explored through the incorporation of additional clinical 
or molecular indicators, as well as by integrating CRS 
with other classification systems to address its limitations 
in specific contexts (28,29).

2.2. AI models commonly used in tumor classification

The standard workflow in ML research typically 
involves key steps such as data preprocessing, model 
construction, model training, parameter optimization, 
and external validation. Model selection plays a pivotal 
role in both data analysis and the advancement of 
research. An appropriate model not only significantly 
enhances research efficiency but also improves the 
accuracy and reliability of analytical results. This section 
systematically describes and discusses ML models, 
which are categorized into three types: conventional 
models, deep learning models, and emerging models.

2.2.1. Conventional ML models

Support vector machines: Support vector machines 
(SVM) were first developed by Cortes et al. in 1995 
as a method for binary classification (30). Before the 
resurgence of deep learning, SVM was one of the 
most widely used ML models in various domains. 
The fundamental principle of SVM is to identify an 
optimal separating hyperplane in the feature space that 
divides data into distinct classes while maximizing the 
margin between them. To achieve this, SVM uses kernel 
methods, utilizing a mapping function to transform 
input data from its original feature space into a higher-
dimensional space, where a separating hyperplane can 
be more easily identified. The strengths of SVM lie in 
its ability to handle high-dimensional data, its suitability 
for small sample sizes, and its excellent generalization 
capabilities. SVM has been widely applied to tumor 
subtyping and classification, including applications that 
incorporate imaging data (31) or transcriptomic data 
(32). However, SVM has certain limitations, such as 
longer training times for large datasets or datasets with 
high feature dimensions, and its sensitivity to noise and 
outliers, which can lead to overfitting.
 Random forest: Random forest (RF), first developed 
by Breiman in 2001, is an ensemble learning method 
that solves classification and regression problems by 
constructing multiple independent decision trees (33). In 
the structure of RF, each internal node of a decision tree 
represents a feature, while each leaf node corresponds 
to a classification (category) or regression (numerical) 
outcome. The final prediction is generated by aggregating 
the outputs of all trees using a voting mechanism (for 
classification problems) or an averaging mechanism 

microsatellite status, metastatic CRC patients can be 
classified into microsatellite stable (MSS, also referred 
to as proficient MMR, pMMR) and MSI (dMMR). 
Studies have shown that mCRC patients with dMMR 
generally have poorer survival outcomes compared 
to those with pMMR (15,16). However, these dMMR 
patients represent a small subset, accounting for only 
3–5% of cases. Recent research has highlighted that 
monoclonal antibodies targeting immune checkpoints 
such as programmed cell death protein-1 and cytotoxic 
T-lymphocyte-associated protein 4 exhibit remarkable 
and durable benefits in this minority of MSI patients 
(17-20). Additionally, MSI status serves as a predictive 
biomarker for sensitivity to immune checkpoint blockade 
(ICB) therapy (21). In contrast, ICB therapies have not 
demonstrated superior efficacy over standard treatments 
in pMMR mCRC patients, underscoring the need for 
further exploration in this area (22).

2.1.3. Clinical staging (TNM)

The TNM staging system is based on the tumor, lymph 
node, and metastasis (TNM) concept first proposed by 
Pierre Denoix in the 1940s and 1950s. It remains the 
most commonly used staging system in the clinical 
management of CRLM (23,24). This system classifies 
cancer based on three key parameters: T refers to the 
size and depth of tumor invasion; N describes the 
involvement of regional lymph nodes; M indicates the 
presence of distant metastases (25). The TNM system 
provides a comprehensive framework for evaluating the 
severity and extent of tumor spread. However, due to its 
relatively narrow evaluation criteria, recent studies have 
suggested incorporating additional factors, such as tumor 
burden and the number of metastatic lesions, to improve 
the TNM system's prognostic accuracy for CRC patients 
and to better guide treatment strategies (26,27).

2.1.4. Clinical risk score

The clinical risk score has emerged in recent years as one 
of the most prominent tools for evaluation of colorectal 
cancer liver metastases (CRLM). A clinical risk score 
was initially proposed by Fong et al. in 1999. This 
landmark study analyzed clinical and pathological data 
from 1,001 consecutive patients and identified five key 
clinical indicators for the scoring system: the nodal status 
of the primary tumor, a disease-free interval of less than 
12 months between the primary tumor and the detection 
of liver metastases, the presence of more than one tumor, 
a preoperative CEA level exceeding 200 ng/ml, and 
a maximum tumor diameter greater than 5 cm. Each 
criterion is assigned 1 point, and the total score stratifies 
patients by risk. The aforementioned study demonstrated 
that patients with lower CRS scores had significantly 
better 5-year survival rates compared to those with 
higher scores, and the CRS outperformed other scoring 
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(for regression problems). RF is highly robust against 
overfitting and can be parallelized to efficiently handle 
large-scale datasets. As a non-parametric approach, 
it effectively models complex nonlinear relationships 
and high-dimensional feature data, and it has been 
extensively applied to tumor subtyping and classification, 
including studies on breast cancer and pancreatic cancer 
(34,35). However, the ensemble nature of RF reduces 
its interpretability, and processing large datasets with 
many decision trees can require substantial time and 
computational resources.
 Regression models: Regression models are widely 
used in statistics and ML to analyze relationships 
between a dependent variable and one or more 
independent variables. While regression methods can 
predict outcomes and explain variable influences, they 
are primarily statistical tools rather than standalone 
ML models. The core of regression models lies in 
finding a function that optimally maps the input values 
of independent variables to the output values of the 
dependent variable, typically by minimizing the error 
between predicted and observed values. Regression 
models encompass various types, including linear 
regression, logistic regression, lasso regression, and Cox 
regression. Cox regression, developed by Cox in 1972 
(36), and lasso regression, developed by Tibshirani in 
1996 (37), are the most commonly utilized in oncology 
research. For instance, Liu et al. utilized Cox regression 
to investigate the relationship between metabolic-
associated fatty liver disease (MAFLD) and multiple 
cancers (38). Li et al. used a Bayesian lasso model to 
integrate multi-omics data for lung cancer classification 
(39). Each regression model has its own strengths and 
limitations. In general, regression models are simple, 
interpretable, and computationally efficient, with 
various regularization methods available to enhance 
their generalizability. However, they are also sensitive to 
outliers, heavily dependent on data characteristics, and 
often less effective when dealing with complex high-
dimensional datasets.
 Gradient boosting algorithm: Gradient boosting 
machine (GBM) is an ensemble learning method 
developed by Friedman in 2001 (40). It iteratively 
optimizes a target function to achieve the best possible 
solution by sequentially combining multiple weak 
learners (typically decision trees) into a strong learner. 
Each weak learner focuses on correcting the prediction 
errors of the previous model. GBM demonstrates 
exceptional performance in handling nonlinear, high-
dimensional, and large-scale datasets, effectively 
capturing complex data patterns while maintaining 
robustness against noise and outliers. Popular 
implementations of gradient boosting include XGBoost, 
LightGBM, and CatBoost. For example, Rodriguez et 
al. used XGBoost combined with imaging and clinical 
parameters for risk stratification of hepatocellular 
carcinoma (HCC) patients (41), while Qi et al. used 

LightGBM as the optimal algorithm for predicting 
cardiovascular disease (CVD)-cancer comorbidity (42). 
However, GBM has some limitations, such as a lengthy 
training time for large datasets and a high dependence on 
hyperparameter tuning, which often requires extensive 
optimization to achieve peak performance.
 k-nearest neighbors: The k-nearest neighbors (kNN) 
algorithm is an instance-based, non-parametric learning 
method known for its simplicity and intuitive nature. It 
predicts outcomes by measuring the similarity between 
samples. Specifically, kNN calculates the distance 
between an input sample and all training samples, selects 
the k nearest neighbors, and infers the target category 
(for classification problems) or value (for regression 
problems) based on the labels or values of these 
neighbors. A defining feature of kNN is its lack of an 
explicit training phase, as it relies primarily on the stored 
training data and distance computations. This simplicity 
makes it easy to implement and adapt. The algorithm 
has been used in various medical research fields. For 
instance, Wang et al. used kNN for lung cancer subtype 
classification (43), and modified kNN methods have 
been used to classify CRC tissues (44).

2.2.2. Deep learning models

Deep learning models (DLMs) are an extension of 
artificial neural networks (ANNs) and represent a more 
advanced and sophisticated branch of ML. Broadly, 
neural networks can be categorized into shallow neural 
networks (typically consisting of one or two hidden 
layers) and deep neural networks (DNNs, generally 
comprising three or more hidden layers). The latter forms 
the foundation and most prevalent framework for DLMs.
 DLMs excel in non-linear modeling, making them 
effective for pattern recognition and predictive tasks. 
These networks act as multi-layer feature extractors, 
transforming input data (e.g. images or text) into abstract 
representations. Using these features, models interpret 
and process data for various applications, such as 
analyzing histopathological slides to distinguish tumor 
from non-tumor regions.
 The following sections wil l  delve into the 
foundational concepts of DLMs, focusing on deep neural 
networks as a paradigm of DLMs and their commonly 
implemented architectures, such as convolutional neural 
networks and recurrent neural networks.
 Deep neural network: Deep neural networks (DNNs) 
are fundamental in deep learning, enabling hierarchical 
feature extraction and complex pattern recognition. A 
typical DNN consists of an input layer, multiple hidden 
layers, and an output layer, with each neuron in a layer 
connected to all neurons in the previous layer. DNNs 
operate through two key processes: forward propagation 
and backpropagation. In forward propagation, input data 
is passed layer by layer, with each neuron computing 
a weighted sum of its inputs, followed by a non-linear 
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activation function. This allows the network to model 
complex patterns. Backpropagation is the cornerstone of 
training DNNs. It calculates the error between predicted 
and true values, propagates it backward, and updates 
weights using optimization algorithms. This iterative 
process minimizes errors and refines model performance.
 DNNs have displayed exceptional performance 
in handling highly complex datasets. For instance, 
Khan et al. integrated over 23,000 CT and pathology 
images to develop a multimodal DNN for predicting 
metastasis and variant classification of liver tumors, 
achieving an accuracy of 96.06% and an AUC of 0.832 
(45). Nevertheless, DNNs have notable limitations. In 
addition to their high demands for large-scale data and 
computational resources, they are inherently "black box" 
models, making their learning processes and decision 
logic difficult to interpret—an issue that constrains their 
broader adoption in medicine. Moreover, conventional 
DNNs may suffer from shallow feature loss when dealing 
with high-dimensional, non-linearly distributed complex 
data, often requiring compensation or refinement 
through the introduction of attention mechanisms or skip 
connections.
 Convolutional neural networks: Convolutional neural 
networks (CNN) are a class of DNNs that incorporate 
convolutional layers and that are particularly suited 
for processing data with grid-like topology, such as 
images and time-series data. Derived from multi-layer 
perceptrons, CNNs are designed to efficiently capture 
spatial locality in data by introducing specialized 
structures like convolutional and pooling layers.
 A typical CNN architecture consists of five main 
components: an input layer, convolutional layers, pooling 
layers, fully connected layers, and an output layer. The 
convolutional layer is the backbone of CNNs, utilizing 
convolutional kernels (or filters, typically small matrices) 
to slide over the input data and extract local features 
such as edges, textures, and shapes. Each kernel learns 
specific feature patterns, with its parameters optimized 
through backpropagation. The pooling layer reduces the 
dimensions of the feature maps using down-sampling 
techniques, thereby decreasing computational complexity 
and enhancing translational invariance. Finally, the fully 
connected layer maps the extracted high-dimensional 
features into specific outputs, such as classification or 
regression predictions.
 Thanks to their powerful feature extraction 
capabilities, CNNs excel in various computer vision 
tasks. For instance, Cho et al. used deep convolutional 
neural networks (DCNNs) in conjunction with image 
data to distinguish between benign and malignant lip 
skin lesions (46). Similarly, Chang et al. utilized CNNs 
combined with self-attention mechanisms to analyze 
histopathological slides in order to predict MSI status in 
CRC patients (47). However, CNNs also have notable 
limitations. They require large-scale training datasets 
and significant computational resources to achieve 

optimal performance. Moreover, CNNs are sensitive to 
hyperparameter settings, often necessitating extensive 
tuning to refine the model for specific applications.
 Recurrent neural networks: Recurrent neural 
networks (RNNs) are specifically designed to process 
sequential data and can trace their origins back to 
Hopfield Networks of Associative Memory, developed 
by Hopfield in 1982 (48). Unlike conventional 
feedforward neural networks (e.g. DNNs), RNNs possess 
recurrent connections and memory capabilities, allowing 
them to retain information across time steps and respond 
to current inputs in the context of past information. This 
unique structure makes RNNs particularly suitable for 
tasks involving temporal dependencies, such as speech 
recognition, natural language processing, and time-series 
forecasting.
 Despite their advantages, RNNs face challenges such 
as vanishing and exploding gradients, particularly when 
processing long sequences. To address these issues, 
several variants of RNNs have been developed, with 
the most prominent being the long short-term memory 
(LSTM) network (49). LSTM introduces a gating 
mechanism that regulates the retention and forgetting of 
information, overcoming the limitations of conventional 
RNNs in learning long-term dependencies. LSTM 
features three core gates—input, forget, and output 
gates—that collectively govern the flow and storage 
of information within the hidden states, enabling it to 
effectively capture long-range dependencies.
 RNNs have accelerated advances in oncology 
research. For example, Yun et al. developed a transfer 
recurrent feature learning framework for intraoperative 
imaging and diagnosis of epithelial cancers (50). 
Similarly, a study combined CNNs with RNNs to 
differentiate benign from malignant fibroepithelial breast 
lesions, achieving promising results (51).

2.2.3. Emerging models and learning strategies

With the rapid advancement of AI technologies, an 
increasing number of emerging models and learning 
strategies are being applied to tumor classification and 
other related medical tasks. These approaches place 
greater emphasis on multimodal data integration, few-
shot learning, and model interpretability, addressing 
the limitations of conventional models while driving 
innovation in the use of ML in medicine.
 Transformer: The Transformer is a deep learning 
architecture based on attention mechanisms, initially 
designed for natural language processing tasks. With its 
typically deeper and more sophisticated layer design, 
the Transformer is categorized as a type of DNN. It 
processes input text or data sequences by dividing them 
into segments and using attention scores to determine the 
weight of each segment in the output module.
 Compared to previous models, the Transformer 
uses multi-head self-attention mechanisms to process 
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input sequences in parallel, significantly improving 
computational efficiency and enabling effective 
modeling of long-range dependencies. The Transformer 
architecture consists of two main components: the 
encoder and the decoder. The encoder transforms input 
data into abstract contextual representations, while 
the decoder generates target sequences based on these 
contextual representations.
 In tasks such as image segmentation and tumor 
classification, Transformers demonstrate exceptional 
performance. For instance, Xin et al. developed 
an improved Transformer model for skin cancer 
classification, achieving an accuracy exceeding 94% (52). 
Similarly, Xu et al. proposed a Transformer-based model, 
Prov-GigaPath, which not only classified subtypes across 
multiple cancer types but also identified molecular 
expression patterns and predicted gene mutations from 
histopathological slides, outperforming conventional 
models in various aspects (53). Nevertheless, the 
Transformer architecture faces certain challenges. Its 
complex and opaque internal mechanisms make the 
decision-making process difficult to interpret, and its 
high demand for computational resources remains a 
significant obstacle to its widespread use in oncology.
 Multimodal ML: Multimodal ML is an approach 
that integrates information from different data sources 
to extract complementary features from multiple types 
of data simultaneously. Given the diverse data involved 
in oncology research—such as imaging, genomic, 
and transcriptomic data—multimodal ML has high 
compatibility and significant potential for advancing 
cancer research.
 Just like DNNs, multimodal learning does not 
refer to a specific model but rather demonstrates the 
variety of data. For instance, Qian et al. reported the 
development of a multimodal model named BMU-Net, 
which integrates clinical data, mammographic images, 
and trimodal ultrasound data to diagnose benign and 
malignant breast tumors, achieving an overall diagnostic 
accuracy exceeding 90% (54). Multimodal ML models 
are evolving toward more efficient data fusion, improved 
interpretability, and enhanced clinical applicability. By 
integrating data from multiple modalities, these models 
can capture deeper insights that are often unavailable 
from a single data source, thereby offering more accurate 
and comprehensive support for tumor classification and 
diagnosis.
 Self-supervised learning: In AI, ML approaches can 
be categorized into supervised learning, unsupervised 
learning, and reinforcement learning, based on whether 
the analyzed data includes specific labels or annotations. 
Self-supervised learning (SSL) is considered an extension 
of unsupervised learning. Unlike supervised methods, 
SSL does not require extensive labeled datasets. Instead, 
its core principle is to construct pretext tasks that enable 
models to extract meaningful feature representations 
from unlabeled data for downstream tasks. SSL methods 

are broadly divided into two main categories: generative 
methods and contrastive methods. Generative methods 
train models by reconstructing data, such as completing 
images or predicting missing words, making them ideal 
for reconstruction tasks. Contrastive methods, in contrast, 
use positive and negative sample pairs to help models 
distinguish similarities and differences.
 These methods are particularly effective in image 
classification and data representation tasks. For example, 
Schirris et al. developed DeepSMILE, a contrastive 
SSL framework for classifying whole slide images of 
HE-stained tissue sections (55). Similarly, Zhang et al. 
developed SANDI, a model capable of spatial cellular 
classification, by first learning pairwise similarities 
among unlabeled data and subsequently incorporating 
reference data (56).  While SSL eliminates the 
dependency on large-scale labeled datasets, developing 
high-performance SSL models requires carefully 
designed pretext tasks and significant computational 
resources.
 In conclusion, while ML models face challenges in 
data dependency and interpretability, AI integration into 
medicine is a key direction for the future. By combining 
AI with conventional methodologies, particularly in 
cancer detection, diagnosis, subtyping, and personalized 
treatment, AI-driven research is advancing precision 
medicine and overcoming technical barriers in 
healthcare.

3. Application of ML to CRLM classification

Based on task requirements and technical methodologies, 
the application of ML to CRC liver metastasis 
classification can be divided into two major categories: 
single-modality task classification and multi-modality 
task classification. The former can be further subdivided 
into three subcategories: classification based on 
imaging data, classification based on omics data, and 
classification based on structured data.

3.1. Single-modality task classification

3.1.1. Based on imaging data

ML has been extensively applied to imaging data for 
CRLM classification, with researchers exploring both 
conventional ML models and advanced deep learning 
frameworks. The following studies demonstrate the 
diversity of approaches and highlight their respective 
strengths and limitations (onlin data: Table 1, https://
www.biosciencetrends.com/supplementaldata/252).
 Tharmaseelan et al. conducted a study using CT 
imaging data from 78 patients, encompassing 1,296 
metastatic liver lesions, to evaluate the performance 
of various ML models (57). These models included 
conventional ML classifiers such as XGBoost and kNN, 
as well as a DLM based on CNN. The CNN model was 
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derived from the DenseNet-121 architecture and trained 
using the PyTorch platform. The objective was to identify 
the primary tumor site in gastrointestinal cancer patients 
with liver metastases. Interestingly, the kNN model 
achieved the highest discriminative ability (AUC: 0.87), 
outperforming the CNN model (AUC: 0.80). However, 
the CNN model demonstrated superior accuracy (0.83 
vs. 0.67). These findings suggest that conventional ML 
models may, in certain classification tasks, perform 
comparably or even better than advanced DLMs, and 
especially with limited datasets.
 Building upon this, Jia et al. proposed a DLM 
based on CT imaging to identify the primary tumor 
sites in patients with liver metastases (58). Their study 
included imaging data from 489 patients and a total of 
769 metastatic liver lesions. To provide a comparative 
analysis, the researchers also developed conventional 
ML models, including Decision Tree, RF, and kNN. 
With a larger sample size, the DLM outperformed 
conventional ML models in all metrics. Specifically, the 
DLM achieved an accuracy of 0.714 and an AUC of 0.811 
on the validation set, and external validation yielded an 
accuracy of 0.667 and an AUC of 0.784. In comparison, 
the best-performing conventional model, RF, achieved 
a maximum AUC of 0.775 and an accuracy of 0.655. 
These results highlight the advantages of DLMs in using 
larger datasets for superior performance.
 Moving into histopathological growth pattern 
analysis, Höppener et al. developed a CNN-based model 
for binary classification of HGPs in liver metastases 
(desmoplastic vs. non-desmoplastic) using digitalized 
whole-slide images (59). Their algorithm, neural image 
compression (NIC), is a multi-task learning framework 
that compresses high-dimensional image patches into 
low-dimensional embeddings while preserving spatial 
information and suppressing noise. The study used 3,641 
slides from 932 patients for training and 870 slides for 
external validation. The model achieved outstanding 
results, with an AUC of 0.93 on the training set and 0.95 
on the validation set. By using supervised training across 
multiple histopathological tasks, NIC demonstrated the 
potential of multi-task learning in extracting transferable 
features for robust classification.
 Similarly, Starmans et al. explored the use of CNNs 
to classify the HGPs of CRLM using CT data (60). The 
study used multi-observer segmentation, combining 
data from three human observers to train the model. 
Each lesion was segmented three times, effectively 
tripling the training sample size. Interestingly, the 
performance of the multi-observer model (AUC: 
0.69) was comparable to the single-observer models 
(maximum AUC: 0.72). Despite exploring ICC-based 
feature selection and ComBat for further analysis, these 
methods did not significantly improve performance. 
The aforementioned study highlights the challenges 
of utilizing multi-observer data and suggests the 
importance of optimizing segmentation techniques for 

better performance.
 Turning to genetic mutation prediction, Wesdorp et 
al. developed models based on RF and gradient boosting 
algorithms to identify KRAS mutation status using 
CT imaging data (61). The study included 255 CRLM 
patients, split into training (n = 204) and test (n = 51) 
sets. While the ensemble classifier performed well on 
the test set (AUC: 0.86), it underperformed in external 
validation (AUC: 0.47). In contrast, RF demonstrated 
relatively better external performance (AUC: 0.54). 
These results reflect ongoing challenges in linking 
imaging features to genetic mutations, exacerbated by 
small sample sizes and insufficient preprocessing.
 Similarly, Granata et al. utilized CT data to predict 
RAS mutations (62). They extracted 851 radiomic 
features from 77 liver metastases in 28 patients and 
constructed multiple ML models, including logistic 
regression, decision trees, kNN, and SVM. Multivariable 
analysis using logistic regression achieved superior 
performance (AUC: 0.953, accuracy: 98%), especially 
after z-score normalization. However, the authors 
noted no significant improvements when applying 
normalization techniques, raising questions about their 
utility in radiomic analysis.
 Finally, Li et al. developed a comprehensive 
platform, the Radiomics Intelligent Analysis Toolkit 
(RIAT), for predicting liver metastasis risk (63). By 
integrating multiple ML methods and clinical data, 
RIAT demonstrated the value of combining advanced 
statistical and ML techniques for robust diagnostic tool 
development. Similarly, Kim et al. applied YOLO-based 
deep learning to large-scale CT imaging (64), achieving 
sensitivity comparable to radiologists but emphasizing 
its role as an assistive, rather than standalone, diagnostic 
tool.
 Together, these studies highlight the diversity of 
imaging-based ML applications in CRLM classification, 
emphasizing the importance of task-specific adaptations, 
model optimization, and data integration.

3.1.2. Based on omics data

In the context of CRLM classification, omics data 
provide a rich source of biological insights, enabling ML 
models to predict risk, classify subtypes, and identify 
molecular features with significant diagnostic and 
prognostic implications. The integration of multi-omics 
datasets with ML not only offers enhanced classification 
accuracy but also deepens our understanding of the 
underlying molecular mechanisms driving CRLM.
 Yu et al. used the AdaBoost algorithm to predict the 
risk of liver metastases in CRC patients using blood test 
markers (65). The study compared AdaBoost to five 
other algorithms, including Extremely Randomized 
Trees (ERT), Multilayer Perceptron, Stochastic Gradient 
Descent (SGD), RF, and XGBoost. AdaBoost, which 
dynamically adjusts sample weights to optimize weak 
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learners, achieved the highest diagnostic accuracy 
(89.3%) and precision (89.4%). Interestingly, MLP 
demonstrated the weakest performance, with an accuracy 
of 79.6% and a precision of 80.1%. The superior 
performance of AdaBoost was attributed to its robustness 
with small datasets, whereas MLP's reliance on larger, 
high-dimensional data likely limited its effectiveness 
in that study. This underscores the potential of simpler, 
adaptive algorithms in data-limited clinical settings.
 Extending the analysis to tissue-level investigations, 
Kiritani et al. developed a logistic regression model 
using mass spectrometry data from 103 CRLM samples 
and 80 normal tissue samples to distinguish metastatic 
from non-malignant tissues (66). The model underwent 
validation using leave-one-out cross-validation 
(LOOCV), 10-fold cross-validation, and an independent 
cohort of 40 samples (20 CRLM and 20 non-cancerous 
tissues). Phosphatidylcholine, phosphatidylethanolamine, 
and monounsaturated fatty acids were found to be 
enriched in CRLM tissues, with the model achieving 
an exceptional accuracy of 99.5% and an AUC of 
0.9999. These findings highlight the synergy of mass 
spectrometry and ML in identifying molecular markers 
for CRLM diagnosis.
 Taking a step further into molecular subtyping, 
Katipally et al. utilized data from the Phase 3 new EPOC 
randomized clinical trial to construct a neural network 
model for CRLM molecular subtyping (29). Sequencing 
data from 93 patients revealed 31 optimal features, 
including 24 mRNAs and 7 miRNAs, which were used 
for subtyping. In a validation cohort of 147 patients, 
the model classified CRLM into canonical, immune, 
and stromal subtypes, with immune subtype patients 
having the best 5-year OS (63%) and canonical subtype 
patients having the worst prognosis (43%). Incorporating 
molecular subtypes into clinical risk scores improved 
predictive performance (OS AUC increased from 0.59 
to 0.63). The aforementioned study demonstrates how 
molecular subtyping can enhance both prognostic 
stratification and personalized therapeutic strategies.
 Finally, Moosavi et al. developed an RF-based 
CRLM classification model using transcriptomic 
data from 171 patients (67). The study compared 
the new LMS subtyping framework to the CMS and 
CRIS classification systems, using 829 CRC samples, 
including CRLM, primary CRC tumors, non-malignant 
liver tissues, organoids, and cell lines. Unlike CMS, 
which struggled to classify CRLM and which was 
influenced by prior systemic treatments, LMS effectively 
stratified samples into five subtypes (LMS1-5). LMS1 
was associated with the poorest prognosis (5-year OS 
of 15%, HR = 2.2, p = 9 × 10⁻⁴), while LMS5 exhibited 
stromal-like characteristics. LMS demonstrated superior 
prognostic stratification and independence from 
treatment-related biases, outperforming CMS and CRIS 
in this regard.
 Together, these studies illustrate the potential of 

integrating omics data with ML for CRLM classification. 
From simple blood markers to comprehensive 
transcriptomic analyses, omics-driven ML approaches 
offer unparalleled opportunities to provide precision 
oncology, unravel molecular complexities, and provide 
robust frameworks for diagnosis and prognosis.

3.1.3. Based on structured data

Building on the success of imaging-based approaches, 
the application of ML to omics data has opened up new 
avenues for CRLM classification. By using molecular 
and biological datasets, these studies aim to glean deeper 
insights into tumor biology while improving diagnostic 
accuracy and prognostic predictions.
 Nemlander et al. developed a gradient boosting 
model to identify non-metastatic colorectal cancer 
(NMCRC) patients during their first clinical visit (68). 
The study included 2,681 participants, consisting of 542 
NMCRC patients and 2,139 matched controls. Clinical 
data used for model construction included age, sex, 
primary healthcare (PHC) unit, NMCRC stage (I-III), 
the number of general practitioner consultations in the 
previous year, and all diagnoses reported in VEGA 
within the preceding year. The dataset contained 360 
different ICD-10 or KSH97-P diagnostic codes. Of the 
participants, 75% were used for training, while 25% 
were used for validation.
 The model was constructed using the GBM package 
in R, with class-stratified 10-fold cross-validation. The 
final model correctly identified 99 out of 135 NMCRC 
cases, achieving a sensitivity of 73.3%, a specificity of 
83.5%, and an AUC of 0.832. Among the 361 predictors, 
184 variables were found to have predictive value, with 
16 factors showing a normalized relative influence 
(NRI) >1%. Notable predictors included changes in 
bowel habits, other diseases of the anus and rectum, 
iron deficiency anemia, and other and unspecified non-
infective gastroenteritis and colitis. These findings 
suggest that such symptoms may indicate an elevated 
risk of NMCRC.
 Although studies utilizing structured data for 
CRLM classification are relatively scarce, this research 
highlights the potential of such data to contribute to early 
cancer detection. Structured data offers a non-invasive, 
cost-effective means of identifying diagnostic patterns 
that can complement other ML approaches in precision 
oncology.

3.2. Multimodal task classification

Moving beyond single-modality approaches, multimodal 
task classification integrates diverse datasets to improve 
predictive accuracy and uncover complex patterns in 
CRLM. By combining biological, clinical, and electronic 
health record (EHR) data, these models provide a 
comprehensive framework for understanding and 
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predicting disease progression.
 Krishnan et al. developed a model using a Bayesian 
regularized neural network (BRANN) and sparse 
multilinear regression to classify CRC patients (69). The 
study integrated multiple biological datasets, including 
plasma lipid and protein levels, chemokines, gene 
mutation status, and clinical information. Initially, a 
regression model, MLR-EM, was constructed to extract 
key feature data, identifying 9 lipids as significant 
predictors for distinguishing CRLM patients. Using these 
features, the BRANN model, a variant of ANN with 
Bayesian regularization, successfully classified cancer-
free individuals, CRC patients, and CRLM patients. The 
model had an R2 of 0.77 and an accuracy of 87% on the 
training set and an R2 of 0.68 and an accuracy of 77% on 
the test set. The aforementioned study demonstrates the 
potential of integrating biochemical and clinical data for 
accurate classification of disease stages in CRC patients.
 Li et al. combined EHR information and laboratory 
data to construct NLP and ML models in order to predict 
the likelihood of postoperative liver metastases in CRC 
patients (70). The study included 1,463 CRC patients, 
609 with CRLM and 854 without. A total of 18 features 
were analyzed using five conventional models and a 
bidirectional encoder representations from Transformer 
(BERT)-based NLP model. Among the conventional 
models, SVM demonstrated the best performance 
(AUC: 0.64, accuracy:  0.64), comparable to the NLP 
model (AUC: 0.676, accuracy: 0.636). When these two 
approaches were fused into a single model, the combined 
framework exhibited significantly enhanced performance, 
achieving an accuracy of 80.8% and precision of 80.3%. 
Moreover, the combined model outperformed physicians 
in an external validation cohort in both accuracy (0.760 
vs. 0.658 and 0.640) and precision (0.763 vs. 0.697 and 
0.670). These results highlight the potential of combining 
EHR data with advanced NLP and ML techniques to 
improve predictive accuracy for CRLM.
 These studies underscore the advantages of 
multimodal approaches in CRLM classification, using 
complementary datasets to refine predictions and 
improve patient stratification. By integrating diverse 
data sources, multimodal models address the limitations 
of single-modality methods and pave the way for more 
robust and clinically actionable insights.

4.  Cl inical  decis ion-making and treatment 
optimization based on cancer classification

4.1. Classification-guided personalized treatment

ML models are increasingly being used to guide clinical 
decision-making and optimize treatment strategies 
for CRLM patients. These models provide valuable 
tools for predicting therapeutic responses, stratifying 
patients, and personalizing treatment approaches. The 
following studies illustrate how classification results can 

inform clinical decisions and improve patient outcomes 
(onlin data: Table 2, https://www.biosciencetrends.com/
supplementaldata/252).
 To begin with, Karagkounis et al. developed an RF 
model to evaluate the pathological response of CRLM 
patients to chemotherapy (71). The study included 
85 patients and 95 liver metastases, with 63 lesions 
classified as responders and 32 as non-responders 
based on histopathological assessments. To address a 
data imbalance, the authors implemented cost-sensitive 
learning by assigning higher penalties for misclassifying 
non-responders. The model outperformed conventional 
methods, including RECIST and morphological 
evaluation, achieving an AUC of 0.87 compared to 0.53 
and 0.56, respectively. This demonstrates the potential 
of ML models to provide more accurate and nuanced 
assessments of chemotherapy responses.
 Building on the use of  CT data  to  predict 
chemotherapy response, Maaref et al. utilized CNNs 
to predict treatment responses in CRLM patients (72). 
The study included 202 patients with 444 lesions, 
where 230 had previously undergone FOLFOX-based 
chemotherapy. The CNN model achieved outstanding 
performance in distinguishing treated from untreated 
lesions (AUC: 0.97) and predicting chemotherapy 
responses (AUC: 0.88, sensitivity: 98.1%). These 
findings highlight the ability of CNNs to handle large 
imaging datasets and assist in managing metastatic 
lesions.
 Expanding on the prediction of chemotherapy 
response, Davis et al. used an attention-based deep 
learning framework to analyze CT images and predict 
responses to neoadjuvant chemotherapy in CRLM 
patients (73). Using a dataset of 33,619 CT images from 
95 patients, the model assigned attention weights to 
different image patches and achieved an AUC of 0.77, far 
surpassing the logistic regression model based on Fong 
scores (AUC: 0.41). These results emphasize the utility 
of attention mechanisms and multi-instance learning 
frameworks when analyzing complex imaging data with 
weak annotations.
 Taking the next step toward multi-modal modeling, 
Qi et al. developed an artificial neural network (ANN) 
model to predict the sensitivity of unresectable CRLM 
patients to irinotecan-based chemotherapy (74). The 
study included 116 patients, randomly divided into 
training (n = 81) and validation (n = 35) sets. Feature 
selection using Pearson correlation and the MRMR 
algorithm identified key imaging and clinical variables 
for model construction. The primary ANN model 
(p-model) integrated multi-scale resampling of imaging 
features with clinical data, while three variant ANN 
models used only single-scale inputs. The p-model 
achieved an AUC of 0.754 (training) and 0.752 
(validation), surpassing the best conventional model, 
XGBoost (AUC: 0.718 and 0.704). Further intra-ANN 
comparisons confirmed the superiority of multi-modal 
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integration, with the p-model outperforming single-scale 
ANN variants. The aforementioned study underscores the 
value of combining multi-scale imaging and clinical data 
to enhance chemotherapy response prediction, offering 
a promising tool for optimizing CRLM treatment 
strategies.
 Focusing on precision medicine, Lu et al. developed 
a hybrid CNN-RNN model to predict VEGF therapy 
sensitivity in mCRC patients based on the VELOUR 
trial (75). By combining CNN-based feature extraction 
with RNN-based temporal sequence analysis, the 
model demonstrated superior performance in predicting 
early treatment responses (AUC: 0.76) compared to 
conventional RECIST (AUC: 0.66) and ETS (AUC: 0.60) 
standards. Moreover, responders identified by the model 
had a significantly longer median OS (18.0 months vs. 
10.4 months for non-responders, HR = 0.49, p = 1×10⁻⁶). 
The aforementioned study highlights the potential of 
combining dynamic imaging data and ML for real-time 
therapeutic decision-making.
 In terms of survival stratification, Endo et al. 
developed a decision-tree-based model to predict 
postoperative chemotherapy responses in CRLM patients 
(76). The study analyzed data from 1,358 patients, 
incorporating 18 demographic and clinicopathologic 
variables, including T stage, primary tumor location, and 
tumor burden score (TBS). Patients with lymph node 
metastasis, specific tumor locations, and certain KRAS 
statuses displayed significant benefits from adjuvant 
chemotherapy. Subgroup analyses revealed that patients 
with lymph node metastasis, left-sided or rectal primary 
tumors with low/high TBS, and right-sided tumors with 
KRAS mutations benefited significantly from adjuvant 
chemotherapy. The model demonstrated good predictive 
performance, with a C-index of 0.68 for OS and 0.69 
for RFS in both training and test sets. These findings 
highlight the utility of incorporating clinicopathologic 
data into predictive models to guide adjuvant 
chemotherapy decisions and improve patient outcomes
 Shifting focus to imaging data and biological 
response, Zhu et al. developed a ML model using 
pre- and post-chemotherapy MRI images to predict 
pathological tumor regression grade (TRG) in CRLM 
patients (77). The study included 180 patients (389 
lesions) divided into training, test, and external validation 
sets. Implemented with TensorFlow and Keras, the 
model utilized multi-stream inputs and center cropping 
to enhance CNN performance. Three models with 
varying input streams were compared: Model A (four 
input streams), Model B (pre-treatment images), and 
Model C (post-treatment images). Model A achieved the 
highest AUC (0.849) with the training set, significantly 
outperforming Models B, C (p = 0.04), and RECIST 
(p = 0.03). In external validation, Model A maintained 
superior performance (AUC: 0.833, accuracy: 0.885) 
compared to RECIST (AUC: 0.558, accuracy: 0.533). 
Additionally, Model A effectively stratified survival 

outcomes, while RECIST-defined groups displayed no 
significant differences (DFS and OS, p = 0.12, p = 0.99). 
The aforementioned study underscores the potential of 
CNN-based models in improving chemotherapy response 
prediction and survival stratification over conventional 
RECIST assessments.
 Giannini et al. utilized imaging data to predict 
treatment responses in HER2-amplified CRLM patients 
receiving HER2 dual-targeted therapy (78). The study 
included CT data from 38 patients and 141 metastatic 
lesions, with 28 patients (108 lesions) in the training set 
and 10 patients (33 lesions) in the validation set. The 
authors extracted 24 radiomic features from CT images 
and applied a Gaussian Naïve Bayes (GNB) classifier 
for feature selection, ultimately retaining 12 significant 
features. The GNB model performed better on the 
training set compared to the validation set, particularly 
in sensitivity (training: a sensitivity of 0.89, a specificity 
of 0.85; validation: a sensitivity of 0.90, a specificity 
of 0.42). The model correctly classified 24 of the 38 
patients, partially misclassified 12, and completely 
misclassified 2. The authors noted that while the model 
effectively predicted responsive lesions (R+), it struggled 
to accurately identify non-responsive lesions (R-). 
The aforementioned study underscores the potential 
of radiomic feature-based models to predict treatment 
response in HER2-targeted therapies, while highlighting 
challenges in generalizability and specificity.
 Together, these studies demonstrate the pivotal role of 
ML models in guiding clinical decisions and optimizing 
treatment strategies for CRLM. By improving the 
accuracy of therapeutic response predictions, stratifying 
patients based on clinical and molecular characteristics, 
and integrating multi-modal data, these models are 
driving precision oncology forward.

4.2. Patient prognostic stratification

ML has significantly enhanced prognostic stratification 
for CRLM patients, utilizing diverse data types to 
improve survival predictions and patient management. 
From imaging-based models to multi-modal approaches, 
these studies illustrate the versatility of ML in addressing 
clinical challenges.
 Wang et al. developed an unsupervised ML model 
based on preoperative CT imaging and clinical data to 
stratify survival risks in 197 CRLM patients (79). Using 
hierarchical clustering, the study filtered imaging features 
from 851 to 56 through Cox regression and divided 
patients into favorable and poor prognosis groups, with 
the latter exhibiting an OS HR of 1.78 (95% CI: 1.12–
2.83). The model outperformed CRS and TBS scores 
in predicting long-term survival, with a time-dependent 
AUC of 0.66 compared to 0.58 and 0.55, respectively.
 Building on this, Paro et al. used a tumor burden-
focused ML model, ML-TB, to optimize thresholds for 
tumor size and number, maximizing five-year survival 
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stratification (80). The study analyzed 1,344 patients 
from five centers and noted superior OS stratification 
compared to conventional Fong scores, with Cohen's d 
values of 1.61, 0.84, and 2.73, highlighting the model's 
ability to redefine tumor burden parameters for better 
clinical outcomes.
 In a similar vein, Lam et al. incorporated lasso 
regression and Cox models to identify key predictors 
from 36 clinical variables in 572 patients (81). Variables 
such as CEA levels, tumor size, and KRAS mutation 
status were critical for OS and RFS predictions, 
achieving a concordance index of 0.651 and significantly 
outperforming Fong CRS in one- and five-year OS 
predictions. This comprehensive analysis underscores 
the importance of integrating clinicopathologic and 
molecular data into ML models for precise risk 
stratification.
 Adding a histopathological dimension, Elforaici 
et al. used deep learning frameworks with GANs and 
Vision Transformers to analyze 1,620 pathology slides 
from 258 patients (82). The model extracted tumor and 
peritumoral features, achieving a c-index of 0.804 for OS 
and 0.735 for time-to-recurrence. By using multi-task 
deep learning, this approach demonstrated the potential 
to enhance prognostic precision through advanced 
histological insights.
 Moro et al. utilized a classification and regression 
tree (CART) model to identify risk factors for CRLM 
prognosis in 1,123 patients (83). Based on demographic 
and clinicopathologic data, the model revealed distinct 
survival profiles for wtKRAS and mtKRAS patients. 
For instance, wtKRAS patients with small (<4.3 cm) 
solitary metastases and no nodal involvement exhibited 
the highest five-year OS (68.5%). The CART model also 
outperformed conventional Fong scores, and particularly 
for wtKRAS patients (AIC 3334 vs. 3341).
 Incorporating imaging and molecular characteristics, 
Saber et al. utilized an attention-based TabNet model to 
predict levels of CD73 expression in 122 patients (84). 
By integrating immunofluorescence and CT data, the 
model achieved an AUC of 0.95 and yielded significant 
prognostic implications, with high levels of CD73 
expression linked to shorter recurrence (13.0 vs. 23.6 
months, p: 0.0098) and disease-specific survival (53.4 
vs. 126.0 months, p: 0.0222). The aforementioned study 
emphasizes the role of molecular markers in stratifying 
treatment responses and outcomes.
 Expanding the focus to targeted therapy, Zhou et al. 
developed the DERBY+ model to predict bevacizumab 
response using PET-CT and clinical data (85). Trained 
on multi-center cohorts, the model achieved an AUC 
of 0.95 with independent datasets, outperforming 
individual predictors such as clinical (AUC: 0.66) and 
imaging features (AUC: 0.72). The identified responders 
exhibited prolonged OS (27.6 vs. 18.5 months, p = 0.010), 
underscoring the utility of integrated ML frameworks for 
precision oncology.

 Turning to recurrence prediction, Zhao et al. 
designed a hybrid DLM combining 2D-CNN, Bi-LSTM, 
and attention modules to predict early recurrence after 
thermal ablation (86). Analyzing 13,248 ultrasound 
images and clinical data from 207 patients, the combined 
model achieved an AUC of 0.78 and demonstrated 
significant prognostic stratification. Notably, the DL 
model consistently outperformed clinical models in all 
datasets, with significantly lower false-positive rates and 
better high-risk group identification (p < 0.001).
 In the realm of disease-free survival prediction, Luo 
et al. compared elastic net (EN) and random survival 
forest (RSF) models using contrast-enhanced CT 
imaging data from 180 patients (87). The EN model 
outperformed RSF in the test set (C-index = 0.78), while 
RSF excelled in the training set (C-index = 0.74). Both 
models effectively stratified DFS outcomes, illustrating 
the complementarity of regression- and forest-based 
approaches in survival analysis.
 Finally, Amygdalos et al. developed a gradient-
boosted decision tree model to predict OS in 487 CRLM 
patients (88). By focusing on six top-ranked predictors, 
such as CEA levels and metastatic lesion size, the 
GBDT-Top6 model achieved a superior C-index of 0.70, 
outperforming the original GBDT (C-index: 0.65). This 
highlights the potential of feature selection in enhancing 
ML model performance and clinical interpretability.
 Together, these studies underscore the transformative 
potential of ML in CRLM prognostic stratification. By 
integrating diverse data sources and using cutting-edge 
algorithms, these models will pave the way for more 
personalized and effective patient care.
 In conclusion, ML has advanced clinical decision-
making and prognostic stratification for CRLM patients 
by integrating clinical, imaging, and molecular data. 
Techniques such as RFs, regression trees, and deep 
learning have demonstrated effectiveness in predicting 
chemotherapy responses, stratifying survival risks, and 
enhancing prognostic accuracy. These advances highlight 
AI's potential to optimize personalized treatment and 
improve patient outcomes in CRLM management.

4. Conclusion

AI has shown great promise in classifying and managing 
CRLM, yet challenges remain in its clinical integration. 
The complexity of multimodal data, limited access 
to large annotated datasets, and ethical concerns such 
as data privacy and model transparency hinder their 
widespread use. Additionally, CRLM's biological 
heterogeneity requires AI models that are both adaptive 
and interpretable.
 To overcome these barriers, future research should 
focus on federated learning to enable secure multi-
institution collaboration, self-supervised and transfer 
learning to reduce dependence on labeled data, and 
improved model interpretability to enhance clinical 
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trust. Longitudinal studies integrating AI into real-world 
workflows will be essential for validation.
 Despite these challenges, AI is transforming CRLM 
management by integrating clinical, imaging, and omics 
data for personalized treatment strategies. Advancing AI-
driven solutions through interdisciplinary collaboration 
will further enhance precision medicine, optimizing 
outcomes for CRLM patients.

Funding: This work was supported by the Shanghai 
Natural Science Foundation Project (22ZR1413300), 
the National Natural Science Foundation of China 
(81874056, 81874182), the National Key Research 
and Development Plan of the Ministry of Science 
and Technology (2022YFE0125300), and the Public 
Health Bureau Foundation of Shanghai (202240240, 
201940043).

Conflict of Interest: The authors have no conflicts of 
interest to disclose.

References

1. Sung H , F e r l ay J , S i ege l RL , Lave r sanne M, 
Soerjomataram I, Jemal A, Bray F. Global Cancer 
Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. CA 
Cancer J Clin. 2021; 71:209-249.

2. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia 
J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal 
cancer: Rationale, challenges and potential. Nat Rev 
Gastroenterol Hepatol. 2019; 16:361-375.

3. Chen Q, Chen J, Deng Y, Bi X, Zhao J, Zhou J, Huang Z, 
Cai J, Xing B, Li Y, Li K, Zhao H. Personalized prediction 
of postoperative complication and survival among 
colorectal liver metastases patients receiving simultaneous 
resection using machine learning approaches: A multi-
center study. Cancer Lett. 2024; 593:216967.

4. Rompianesi G, Pegoraro F, Ceresa CD, Montalti R, 
Troisi RI. Artificial intelligence in the diagnosis and 
management of colorectal cancer liver metastases. World J 
Gastroenterol. 2022; 28:108-122.

5. Wu X, Li W, Tu H. Big data and artificial intelligence in 
cancer research. Trends Cancer. 2024; 10:147-160.

6. Joshi RM, Telang B, Soni G, Khalife A. Overview of 
perspectives on cancer, newer therapies, and future 
directions. Oncol Transl Med. 2024; 10:105-109.

7. Yu C, Shi Z, Zhou G, Chang X. Revisiting the survival 
paradox between stage IIB/C and IIIA colon cancer. Sci 
Rep. 2024; 14:22133.

8. Vermeulen PB, Colpaert C, Salgado R, Royers R, 
Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix 
LY, Van Marck E. Liver metastases from colorectal 
adenocarcinomas grow in three patterns with different 
angiogenesis and desmoplasia. J Pathol. 2001; 195:336-
342.

9. van Dam PJ, van der Stok EP, Teuwen LA, et al . 
International consensus guidelines for scoring the 
histopathological growth patterns of liver metastasis. Br J 
Cancer. 2017; 117:1427-1441.

10. Falcão D, Alexandrino H, Caetano Oliveira R, Martins 
J, Ferreira L, Martins R, Serôdio M, Martins M, Tralhão 

JG, Cipriano MA, Castro E Sousa F. Histopathologic 
patterns as markers of prognosis in patients undergoing 
hepatectomy for colorectal cancer liver metastases 
- Pushing growth as an independent risk factor for 
decreased survival. Eur J Surg Oncol. 2018; 44:1212-
1219.

11. Galjart B, Nierop PMH, van der Stok EP, van den Braak 
RRJC, Höppener DJ, Daelemans S, Dirix LY, Verhoef C, 
Vermeulen PB, Grünhagen DJ. Angiogenic desmoplastic 
histopathological growth pattern as a prognostic marker of 
good outcome in patients with colorectal liver metastases. 
Angiogenesis. 2019; 22:355-368.

12. Takasu C, Morine Y, Yoshikawa K, Tokunaga T, Nishi M, 
Kashihara H, Wada Y, Yoshimoto T, Shimada M. Impact 
of pure desmoplastic histological growth patterns in 
colorectal liver metastasis. BMC Cancer. 2024; 24:1528.

13. Lazaris A, Amri A, Petrillo SK, Zoroquiain P, Ibrahim 
N, Salman A, Gao ZH, Vermeulen PB, Metrakos P. 
Vascularization of colorectal carcinoma liver metastasis: 
Insight into stratification of patients for anti-angiogenic 
therapies. J Pathol Clin Res. 2018; 4:184-192.

14. Cunningham JM, Kim CY, Christensen ER, Tester DJ, 
Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid 
DJ, Walsh Vockley C, Kubly V, Nelson H, Michels VV, 
Thibodeau SN. The frequency of hereditary defective 
mismatch repair in a prospective series of unselected 
colorectal carcinomas. Am J Hum Genet. 2001; 69:780-
790.

15. Venderbosch S, Nagtegaal ID, Maughan TS, et al. 
Mismatch repair status and BRAF mutation status in 
metastatic colorectal cancer patients: A pooled analysis of 
the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin 
Cancer Res. 2014; 20:5322-5330.

16. Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH, 
Agarwal A, Maru DM, Sieber O, Desai J. Impact of BRAF 
mutation and microsatellite instability on the pattern of 
metastatic spread and prognosis in metastatic colorectal 
cancer. Cancer. 2011; 117:4623-4632.

17. Overman MJ, McDermott R, Leach JL, et al. Nivolumab 
in patients with metastatic DNA mismatch repair-deficient 
or microsatellite instability-high colorectal cancer 
(CheckMate 142): An open-label, multicentre, phase 2 
study. Lancet Oncol. 2017; 18:1182-1191.

18. Overman MJ, Lonardi S, Wong KYM, et al. Durable 
clinical benefit with nivolumab plus ipilimumab in DNA 
mismatch repair-deficient/microsatellite instability-high 
metastatic colorectal cancer. J Clin Oncol. 2018; 36:773-
779.

19. André T, Shiu KK, Kim TW, et al. Pembrolizumab in 
microsatellite-instability-high advanced colorectal cancer. 
N Engl J Med. 2020; 383:2207-2218.

20. Bi F, Dong J, Jin C, et al. Iparomlimab (QL1604) in 
patients with microsatellite instability-high (MSI-H) 
or mismatch repair-deficient (dMMR) unresectable or 
metastatic solid tumors: A pivotal, single-arm, multicenter, 
phase II trial. J Hematol Oncol. 2024; 17:109.

21. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors 
with mismatch-repair deficiency. N Engl J Med. 2015; 
372:2509-2520.

22. Kawazoe A, Xu RH, García-Alfonso P, et al. Lenvatinib 
plus pembrolizumab versus standard of care for previously 
treated metastatic colorectal cancer: Final analysis of the 
randomized, open-label, Phase III LEAP-017 study. J Clin 
Oncol. 2024; 42:2918-2927.

23. AJCC Cancer Staging Handbook. https://link.springer.

(161)



BioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.com

com/book/9780387884424 (accessed February 1, 2025)
24. Sobin LH, Gospodarowicz MK, Wittekind C, eds. TNM 

Classification of Malignant Tumours. 8th ed. Wiley-
Blackwell, Oxford, UK, 2017.

25. Weiser MR. AJCC 8th Edition: Colorectal Cancer. Ann 
Surg Oncol. 2018; 25:1454-1455.

26. Jin X, Wu Y, Feng Y, Lin Z, Zhang N, Yu B, Mao A, 
Zhang T, Zhu W, Wang L. A population-based predictive 
model identifying optimal candidates for primary and 
metastasis resection in patients with colorectal cancer with 
liver metastatic. Front Oncol. 2022; 12:899659.

27. Takeda Y, Mise Y, Matsumura M, Hasegawa K, Yoshimoto 
J, Imamura H, Noro T, Yamamoto J, Ishizuka N, Inoue 
Y, Ito H, Takahashi Y, Saiura A. Accuracy of modern 
clinical risk score including RAS status changes based on 
whether patients received perioperative chemotherapy for 
colorectal liver metastases. World J Surg. 2021; 45:2176-
2184.

28. Brudvik KW, Jones RP, Giuliante F, et al. RAS mutation 
clinical risk score to predict survival after resection of 
colorectal liver metastases. Ann Surg. 2019; 269:120-126.

29. Katipally RR, Martinez CA, Pugh SA, Bridgewater 
JA, Primrose JN, Domingo E, Maughan TS, Talamonti 
MS, Posner MC, Weichselbaum RR, Pitroda SP; with 
the S:CORT Consortium. Integrated cinical-molecular 
classification of colorectal liver metastases: A biomarker 
analysis of the Phase 3 new EPOC randomized clinical 
trial. JAMA Oncol. 2023; 9:1245-1254.

30. Cortes C, Vapnik V. Support-vector networks. Mach 
Learn. 1995; 20:273-297.

31. Sun T, Wang J, Li X, Lv P, Liu F, Luo Y, Gao Q, Zhu 
H, Guo X. Comparative evaluation of support vector 
machines for computer aided diagnosis of lung cancer 
in CT based on a multi-dimensional data set. Comput 
Methods Programs Biomed. 2013; 111:519-524.

32. Chu F, Wang L. Applications of support vector machines 
to cancer classification with microarray data. Int J Neural 
Syst. 2005; 15:475-484.

33. Breiman L. Random forests. Mach Learn. 2001; 45:5-32.
34. Zare A, Postovit LM, Githaka JM. Robust inflammatory 

breast cancer gene signature using nonparametric random 
forest analysis. Breast Cancer Res. 2021; 23:92.

35. Verschuur AVD, Hackeng WM, Westerbeke F, et al. DNA 
methylation profiling enables accurate classification 
of nonductal primary pancreatic neoplasms. Clin 
Gastroenterol Hepatol. 2024; 22:1245-1254.e10.

36. Cox D. Regression models and life-tables. J R Stat Soc 
Ser B-Stat Methodol. 1972; 34:187-220.

37. Tibshirani R. Regression shrinkage and selection via the 
lasso. J R Stat Soc Ser B (Methodol). 1996; 58:267-288.

38. Liu Z, Lin C, Suo C, Zhao R, Jin L, Zhang T, Chen X. 
Metabolic dysfunction-associated fatty liver disease 
and the risk of 24 specific cancers. Metabolism. 2022; 
127:154955.

39. Li J, Wang Y, Song X, Xiao H. Adaptive multinomial 
regression with overlapping groups for multi-class 
classification of lung cancer. Comput Biol Med. 2018; 
100:1-9.

40. Friedman JH. Greedy function approximation: A gradient 
boosting machine. Ann Stat. 2001; 29:1189-1232.

41. Rodriguez LA, Schmittdiel JA, Liu L, Macdonald BA, 
Balasubramanian S, Chai KP, Seo SI, Mukhtar N, Levin 
TR, Saxena V. Hepatocellular carcinoma in metabolic 
dysfunction-associated steatotic liver disease. JAMA Netw 
Open. 2024; 7:e2421019.

42. Qi X, Wang S, Fang C, Jia J, Lin L, Yuan T. Machine 
learning and SHAP value interpretation for predicting 
comorbidity of cardiovascular disease and cancer with 
dietary antioxidants. Redox Biol. 2024; 79:103470.

43. Wang C, Long Y, Li W, Dai W, Xie S, Liu Y, Zhang 
Y, Liu M, Tian Y, Li Q, Duan Y. Exploratory study on 
classification of lung cancer subtypes through a combined 
K-nearest neighbor classifier in breathomics. Sci Rep. 
2020; 10:5880.

44. Li Q, Hao C, Kang X, Zhang J, Sun X, Wang W, Zeng 
H. Colorectal cancer and colitis diagnosis using Fourier 
transform infrared spectroscopy and an improved 
k-nearest-neighbour classifier. Sensors (Basel). 2017; 
17:2739.

45. Khan RA, Fu M, Burbridge B, Luo Y, Wu FX. A multi-
modal deep neural network for multi-class liver cancer 
diagnosis. Neural Netw. 2023; 165:553-561.

46. Cho SI, Sun S, Mun JH, Kim C, Kim SY, Cho S, Youn 
SW, Kim HC, Chung JH. Dermatologist-level classification 
of malignant lip diseases using a deep convolutional 
neural network. Br J Dermatol. 2020; 182:1388-1394.

47. Chang X, Wang J, Zhang G, Yang M, Xi Y, Xi C, Chen 
G, Nie X, Meng B, Quan X. Predicting colorectal cancer 
microsatellite instability with a self-attention-enabled 
convolutional neural network. Cell Rep Med. 2023; 
4:100914.

48. Hopfield JJ. Neural networks and physical systems with 
emergent collective computational abilities. Proc Natl 
Acad Sci U S A. 1982; 79:2554-2558.

49. Hochreiter S, Schmidhuber J. Long short-term memory. 
Neural Comput. 1997; 9:1735-1780.

50. Yun G, Vyas K, Yang J, Yang GZ. Transfer recurrent 
feature learning for endomicroscopy image recognition. 
IEEE Trans Med Imaging. 2019; 38:791-801.

51. Cheng CL, Md Nasir ND, Ng GJZ, et al. Artificial 
intelligence modelling in differentiating core biopsies of 
fibroadenoma from phyllodes tumor. Lab Invest. 2022; 
102:245-252.

52. Xin C, Liu Z, Zhao K, Miao L, Ma Y, Zhu X, Zhou Q, 
Wang S, Li L, Yang F, Xu S, Chen H. An improved 
transformer network for skin cancer classification. 
Comput Biol Med. 2022; 149:105939.

53. Xu H, Usuyama N, Bagga J, et al . A whole-slide 
foundation model for digital pathology from real-world 
data. Nature. 2024; 630:181-188.

54. Qian X, Pei J, Han C, et al. A multimodal machine 
learning model for the stratification of breast cancer risk. 
Nat Biomed Eng. 2025; 9:356-370.

55. Schirris Y, Gavves E, Nederlof I, Horlings HM, Teuwen 
J. DeepSMILE: Contrastive self-supervised pre-training 
benefits MSI and HRD classification directly from H&E 
whole-slide images in colorectal and breast cancer. Med 
Image Anal. 2022; 79:102464.

56. Zhang H, AbdulJabbar K, Grunewald T, et al. Self-
supervised deep learning for highly efficient spatial 
immunophenotyping. EBioMedicine. 2023; 95:104769.

57. Tharmaseelan H, Vellala AK, Hertel A, Tollens F, Rotkopf 
LT, Rink J, Woźnicki P, Ayx I, Bartling S, Nörenberg D, 
Schoenberg SO, Froelich MF. Tumor classification of 
gastrointestinal liver metastases using CT-based radiomics 
and deep learning. Cancer Imaging. 2023; 23:95.

58. Jia W, Li F, Cui Y, Wang Y, Dai Z, Yan Q, Liu X, Li Y, 
Chang H, Zeng Q. Deep learning radiomics model of 
contrast-enhanced CT for differentiating the primary 
source of liver metastases. Acad Radiol. 2024; 31:4057-

(162)



BioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.com

4067.
59. Höppener DJ, Aswolinskiy W, Qian Z, Tellez D, Nierop 

PMH, Starmans M, Nagtegaal ID, Doukas M, de Wilt 
JHW, Grünhagen DJ, van der Laak JAWM, Vermeulen 
P, Ciompi F, Verhoef C. Classifying histopathological 
growth patterns for resected colorectal liver metastasis 
with a deep learning analysis. BJS Open. 2024; 8:zrae127.

60. Starmans MPA, Buisman FE, Renckens M, Willemssen 
FEJA, van der Voort SR, Groot Koerkamp B, Grünhagen 
DJ, Niessen WJ, Vermeulen PB, Verhoef C, Visser JJ, 
Klein S. Distinguishing pure histopathological growth 
patterns of colorectal liver metastases on CT using deep 
learning and radiomics: A pilot study. Clin Exp Metastasis. 
2021; 38:483-494.

61. Wesdorp N, Zeeuw M, van der Meulen D, et al . 
Identifying genetic mutation status in patients with 
colorectal cancer liver metastases using radiomics-
based machine-learning models. Cancers (Basel). 2023; 
15:5648.

62. Granata V, Fusco R, Setola SV, Brunese MC, Di Mauro 
A, Avallone A, Ottaiano A, Normanno N, Petrillo A, Izzo 
F. Machine learning and radiomics analysis by computed 
tomography in colorectal liver metastases patients for 
RAS mutational status prediction. Radiol Med. 2024; 
129:957-966.

63. Li M, Li X, Guo Y, Miao Z, Liu X, Guo S, Zhang H. 
Development and assessment of an individualized 
nomogram to predict colorectal cancer liver metastases. 
Quant Imaging Med Surg. 2020; 10:397-414.

64. Kim K, Kim S, Han K, Bae H, Shin J, Lim JS. Diagnostic 
performance of deep learning-based lesion detection 
algorithm in CT for detecting hepatic metastasis from 
colorectal cancer. Korean J Radiol. 2021; 22:912-921.

65. Yu Z, Li G, Xu W. Rapid detection of liver metastasis risk 
in colorectal cancer patients through blood test indicators. 
Front Oncol. 2024; 14:1460136.

66. Kiritani S, Yoshimura K, Arita J, Kokudo T, Hakoda H, 
Tanimoto M, Ishizawa T, Akamatsu N, Kaneko J, Takeda S, 
Hasegawa K. A new rapid diagnostic system with ambient 
mass spectrometry and machine learning for colorectal 
liver metastasis. BMC Cancer. 2021; 21:262.

67. Moosavi SH, Eide PW, Eilertsen IA, Brunsell TH, 
Berg KCG, Røsok BI, Brudvik KW, Bjørnbeth BA, 
Guren MG, Nesbakken A, Lothe RA, Sveen A. De 
novo transcriptomic subtyping of colorectal cancer liver 
metastases in the context of tumor heterogeneity. Genome 
Med. 2021; 13:143.

68. Nemlander E, Ewing M, Abedi E, Hasselström J, Sjövall 
A, Carlsson AC, Rosenblad A. A machine learning tool 
for identifying non-metastatic colorectal cancer in primary 
care. Eur J Cancer. 2023; 182:100-106.

69. Krishnan ST, Winkler D, Creek D, Anderson D, Kirana C, 
Maddern GJ, Fenix K, Hauben E, Rudd D, Voelcker NH. 
Staging of colorectal cancer using lipid biomarkers and 
machine learning. Metabolomics. 2023; 19:84.

70. Li J, Wang X, Cai L, Sun J, Yang Z, Liu W, Wang Z, Lv H. 
An interpretable deep learning framework for predicting 
liver metastases in postoperative colorectal cancer patients 
using natural language processing and clinical data 
integration. Cancer Med. 2023; 12:19337-19351.

71. Karagkounis G, Horvat N, Danilova S, et al. Computed 
tomography-based radiomics with machine learning 
outperforms radiologist assessment in estimating 
colorectal liver metastases pathologic response after 
chemotherapy. Ann Surg Oncol. 2024; 31:9196-9204.

72. Maaref A, Romero FP, Montagnon E, Cerny M, Nguyen B, 
Vandenbroucke F, Soucy G, Turcotte S, Tang A, Kadoury S. 
Predicting the response to FOLFOX-based chemotherapy 
regimen from untreated liver metastases on baseline CT: 
A deep neural network approach. J Digit Imaging. 2020; 
33:937-945.

73. Davis JMK, Niazi MKK, Ricker AB, Tavolara TE, 
Robinson JN, Annanurov B, Smith K, Mantha R, Hwang J, 
Shrestha R, Iannitti DA, Martinie JB, Baker EH, Gurcan 
MN, Vrochides D. Predicting response to neoadjuvant 
chemotherapy for colorectal liver metastasis using deep 
learning on prechemotherapy cross-sectional imaging. J 
Surg Oncol. 2024; 130:93-101.

74. Qi W, Yang J, Zheng L, Lu Y, Liu R, Ju Y, Niu T, Wang 
D. CT-based radiomics for the identification of colorectal 
cancer liver metastases sensitive to first-line irinotecan-
based chemotherapy. Med Phys. 2023; 50:2705-2714.

75. Lu L, Dercle L, Zhao B, Schwartz LH. Deep learning for 
the prediction of early on-treatment response in metastatic 
colorectal cancer from serial medical imaging. Nat 
Commun. 2021; 12:6654.

76. Endo Y, Alaimo L, Moazzam Z, et al. Optimal policy 
tree to assist in adjuvant therapy decision-making after 
resection of colorectal liver metastases. Surgery. 2024; 
175:645-653.

77. Zhu HB, Xu D, Ye M, Sun L, Zhang XY, Li XT, Nie 
P, Xing BC, Sun YS. Deep learning-assisted magnetic 
resonance imaging prediction of tumor response to 
chemotherapy in patients with colorectal liver metastases. 
Int J Cancer. 2021; 148:1717-1730.

78. Giannini V, Rosati S, Defeudis A, et al. Radiomics 
predicts response of individual HER2-amplified colorectal 
cancer liver metastases in patients treated with HER2-
targeted therapy. Int J Cancer. 2020; 147:3215-3223.

79. Wang Q, Nilsson H, Xu K, Wei X, Chen D, Zhao D, Hu 
X, Wang A, Bai G. Exploring tumor heterogeneity in 
colorectal liver metastases by imaging: Unsupervised 
machine learning of preoperative CT radiomics features 
for prognostic stratification. Eur J Radiol. 2024; 
175:111459.

80. Paro A, Hyer MJ, Tsil imigras DI, Guglielmi A, 
Ruzzenente A, Alexandrescu S, Poultsides G, Aucejo 
F, Cloyd JM, Pawlik TM. Machine learning approach 
to stratifying prognosis relative to tumor burden after 
resection of colorectal liver metastases: An international 
cohort analysis. J Am Coll Surg. 2022; 234:504-513.

81. Lam CSN, Bharwani AA, Chan EHY, Chan VHY, 
Au HLH, Ho MK, Rashed S, Kwong BMH, Fang 
W, Ma KW, Lo CM, Cheung TT. A machine learning 
model for colorectal liver metastasis post-hepatectomy 
prognostications. Hepatobiliary Surg Nutr. 2023; 12:495-
506.

82. Elforaici MEA, Montagnon E, Romero FP, Le WT, Azzi 
F, Trudel D, Nguyen B, Turcotte S, Tang A, Kadoury S. 
Semi-supervised ViT knowledge distillation network with 
style transfer normalization for colorectal liver metastases 
survival prediction. Med Image Anal. 2025; 99:103346.

83. Moro A, Mehta R, Tsilimigras DI, Sahara K, Paredes AZ, 
Bagante F, Guglielmi A, Alexandrescu S, Poultsides GA, 
Sasaki K, Aucejo FN, Pawlik TM. Prognostic factors differ 
according to KRAS mutational status: A classification and 
regression tree model to define prognostic groups after 
hepatectomy for colorectal liver metastasis. Surgery. 2020; 
168:497-503.

84. Saber R, Henault D, Messaoudi N, Rebolledo R, 

(163)



BioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):150-164.                                                  www.biosciencetrends.com

Montagnon E, Soucy G, Stagg J, Tang A, Turcotte S, 
Kadoury S. Radiomics using computed tomography to 
predict CD73 expression and prognosis of colorectal 
cancer liver metastases. J Transl Med. 2023; 21:507.

85. Zhou S, Sun D, Mao W, Liu Y, Cen W, Ye L, Liang F, Xu 
J, Shi H, Ji Y, Wang L, Chang W. Deep radiomics-based 
fusion model for prediction of bevacizumab treatment 
response and outcome in patients with colorectal 
cancer liver metastases: A multicentre cohort study. 
EClinicalMedicine. 2023; 65:102271.

86. Zhao QX, He XL, Wang K, Cheng ZG, Han ZY, 
Liu FY, Yu XL, Hui Z, Yu J, Chao A, Liang P. Deep 
learning model based on contrast-enhanced ultrasound 
for predicting early recurrence after thermal ablation 
of colorectal cancer liver metastasis. Eur Radiol. 2023; 
33:1895-1905.

87. Luo X, Deng H, Xie F, Wang L, Liang J, Zhu X, Li T, 
Tang X, Liang W, Xiang Z, He J. Prognostication of 
colorectal cancer liver metastasis by CE-based radiomics 
and machine learning. Transl Oncol. 2024; 47:101997.

88. Amygdalos I, Müller-Franzes G, Bednarsch J, Czigany 
Z, Ulmer TF, Bruners P, Kuhl C, Neumann UP, Truhn D, 
Lang SA. Novel machine learning algorithm can identify 
patients at risk of poor overall survival following curative 
resection for colorectal liver metastases. J Hepatobiliary 
Pancreat Sci. 2023; 30:602-614.

Received February 2, 2025; Revised March 30, 2025; Accepted 
April 12, 2025.

§These authors contributed equally to this work.
*Address correspondence to:
Lu Wang and Weiping Zhu, Department of Hepatic Surgery, 
Fudan University Shanghai Cancer Center, Shanghai Medical 
College, Fudan University, Shanghai 200032, China.
E-mail: wangluzl@fudan.edu.cn (LW), wpzhush@hotmail.com 
(WZ)

Released online in J-STAGE as advance publication April 15, 
2025.

(164)


