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1. Introduction

Cholangiocarcinoma is the second most common primary 
liver malignancy after hepatocellular carcinoma (HCC) 
worldwide, accounting for approximately 10%–20% of 
all primary liver cancers (1). Increasing evidences show 
that its morbidity and mortality rates have steadily risen 
in the past decades (2). Despite tremendous progress in 
advanced treatment, the prognosis of cholangiocarcinoma 
patients remains dismal, with a 5-year overall survival 
(OS) rate ranging from 14% to 40% (3). Because most 
of cholangiocarcinoma patients are already in the 

advanced clinical stage with the occurrence of early 
invasion and metastasis at the time of original diagnosis, 
which leads to minor eligibility for surgical resection 
(4), development of novel treatment strategies for 
cholangiocarcinoma is urgently needed.
 Currently, immunotherapy is emerging as a promising 
therapeutic strategy for various types of cancers (5). 
Particularly with the clinical application of immune 
checkpoint blockade (ICB) treatment in a couple of 
types of cancer, including melanoma (6), lymphoma 
(7) and non-small cell lung cancer (NSCLC) (8), tumor 
immunotherapy has revolutionized the management 
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This study aims to determine the predictive role of dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) derived radiomic model in tumor immune profiling and immunotherapy for 
cholangiocarcinoma. To perform radiomic analysis, immune related subgroup clustering was first 
performed by single sample gene set enrichment analysis (ssGSEA). Second, a total of 806 radiomic 
features for each phase of DCE-MRI were extracted by utilizing the Python package Pyradiomics. 
Then, a predictive radiomic signature model was constructed after a three-step features reduction and 
selection, and receiver operating characteristic (ROC) curve was employed to evaluate the performance 
of this model. In the end, an independent testing cohort involving cholangiocarcinoma patients 
with anti-PD-1 Sintilimab treatment after surgery was used to verify the potential application of the 
established radiomic model in immunotherapy for cholangiocarcinoma. Two distinct immune related 
subgroups were classified using ssGSEA based on transcriptome sequencing. For radiomic analysis, a 
total of 10 predictive radiomic features were finally identified to establish a radiomic signature model 
for immune landscape classification. Regarding to the predictive performance, the mean AUC of ROC 
curves was 0.80 in the training/validation cohort. For the independent testing cohort, the individual 
predictive probability by radiomic model and the corresponding immune score derived from ssGSEA 
was significantly correlated. In conclusion, radiomic signature model based on DCE-MRI was capable 
of predicting the immune landscape of chalangiocarcinoma. Consequently, a potentially clinical 
application of this developed radiomic model to guide immunotherapy for cholangiocarcinoma was 
suggested.
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of cancer patients in recent decades. As reviewed 
in an updated report regarding immunotherapy for 
cholangiocarcinoma, several novel immunotherapeutic 
approaches, such as adoptive cell transfer therapy, 
cancer vaccines and ICB treatment combined with other 
targeted therapy, are currently under investigation (9,10). 
Unfortunately, only 20-50% of patients with advanced 
solid tumors significantly benefit from ICB therapy, 
mainly due to intrinsic heterogeneity in tumor (11). 
Therefore, it is of necessity to identify robust predictive 
biomarkers for selection of potentially responsive 
patients prior to immunotherapy (12,13).
 Previous reports proved predictive roles of tumor 
immune landscape in tumor immunotherapy, reflected 
in a remarkably significant association between the 
status of tumor-infiltrating lymphocytes (TILs) (14) 
or programmed death-ligand 1 (PD-L1) (15) in tumor 
microenvironment (TME) and therapeutic efficacy to 
ICB treatment. However, tumor immunophenotype is 
currently assessed by immunohistochemistry (IHC) 
assay (16) and flow cytometric analyses, which mainly 
depends on biopsy specimen availability. Given 
the complexity of the staining procedure, lack of 
standardization and subjectivity of results interpretation 
and the spatio-temporal heterogeneity in tumorous 
tissues, a noninvasive, repeatable and reliable method 
is urgently needed to overcome these deficiencies. 
Dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) is one of the most commonly used imaging 
modalities in clinical practice for cholangiocarcinoma 
(17). Apart from conventional parameters based on MRI 
images, radiomic analysis and deep learning algorithms 
based on MRI images also exhibited a predictive power 
in prediction of tumor immune status for multiple types 
of cancer, including cholangiocarcinoma (18,19).
 Radiomics, emerging as a novel technique, allows 
for a high-throughput analysis to extract the hidden non-
visual features and establish corresponding descriptive 
or predictive models to characterize the intrinsic 
heterogeneous nature of tumors reflected in medical 
images (20). However, with the rapid development of 
radiomics, the biological rationale underlying the high 
predictive power of established radiomic models is 
increasingly required, which is not only an important 
tendency but also a challenge for radiomic studies 
in future (21). Radiomics combined with genomics 
or associated transcriptomics is significantly helpful 
to reintroduce biological meaning into radiomics. 
That was the very reason why we chose to perform 
radiotranscriptomics but not traditional radiomics 
in the study. Though TIL score and/or PD-1/PD-L1 
status is predictive of the tumor immune landscape, 
a comprehensive characterization of the tumor 
immunophenotype is needed to substantially improve the 
prospect of tumor immunotherapy. With the development 
of next-generation sequencing techniques and the rise 
of bioinformatic analysis, distinct immune subtypes in 

the TME of cholangiocarcinoma were characterized 
based on transcriptome sequencing, representing the 
comprehensive tumor immune landscape (22,23).
 For radiotranscriptomics in the present investigation, 
transcriptomic signature was used as a starting point to 
identify the predictive imaging radiomic signature. In 
other words, tumor immune subgroups classification 
for cholangiocarcinoma was first achieved based on 
transcriptome sequencing data by an unsupervised 
clustering method. Then, quantitative radiomic features 
were extracted and selected to establish a potentially 
predictive radiomic signature model for tumor immune 
subgroups classification in cholangiocarcinoma. Finally, 
the predictive power of this developed radiomic signature 
model was evaluated by the value of area under the 
curve (AUC) based on receiver operating characteristic 
(ROC) analysis. Furthermore, cholangiocarcinoma 
pat ients  with immunotherapy who underwent 
transcriptome sequencing after surgery and DCE-MRI 
examination prior to treatment were also included as an 
independent testing cohort to test the potential of this 
model in prediction of immunotherapy. Promisingly, this 
constructed radiomic signature model based on DCE-
MRI was able to noninvasively and comprehensively 
characterize the local tumor immune landscape, and then 
guide immunotherapy for cholangiocarcinoma in clinical 
practice.

2. Materials and Methods

2.1. Patients selection

All recruited patients eligible for this present 
investigation met the following strict criteria: (1) patients 
with biopsy-proven diagnosis of cholangiocarcinoma 
after surgical resection; (2) patients who underwent 
preoperative liver DCE-MRI within 1 month of surgery; 
(3) patients without preoperative adjuvant treatment, 
such as chemotherapy, radiotherapy, molecular targeted 
therapy and other treatment; (4) patients who underwent 
specimen transcriptome sequencing and IHC staining for 
immune cells infiltration. The exclusion criteria were as 
follows: (1) patients without complete clinicopathologic 
information; (2) patients without qualified MRI images 
for tumor segmentation; (3) patients without valid 
sample transcriptome sequencing data or tumoral 
IHC assay results. A total of 365 cholangiocarcinoma 
patients were screened to recruit eligible candidates 
who underwent preoperative DCE-MRI examination 
and postoperat ive  t ranscr iptome sequencing. 
Among cholangiocarcinoma candidates undergoing 
transcriptome sequencing after surgery (n = 72), 
cholangiocarcinoma patient with complete preoperative 
DCE-MRI information (n = 44) was used as traing 
cohort (n = 34) (3-fold cross-validation, 50 repeation) 
and independent testing cohort (n = 10) to construct and 
evaluate a preliminay radiotranscriptomics model for 
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Repetition time/echo time (TR/TE) = 4/1.8 ms, number 
of excitations: (NEX) = 0.7, bandwidth = 142.9 kHz, 
thickness = 4mm, slice gap = -2mm, field of view (FOV) 
= 26 cm, matrix = 220×192, flip angle (FA) = 12°.

2.3. Immunotherapy and transcriptome sequencing for 
cholangiocarcinoma

A total of 10 advanced cholangiocarcinoma patients 
with postoperative transcriptome sequencing data 
were enrolled for immunotherapy in combination with 
systematic chemotherapy in the present investigation. 
Sintilimab were administered intravenously at a dose 
of 3 mg/kg every 3 weeks for at least 4 courses of 
treatment until disease progression or unacceptable toxic 
events. Therapy response was evaluated by radiological 
assessment (using computed tomography or magnetic 
resonance imaging) at baseline and then every 12 weeks 
during treatment or follow-up. The primary endpoint 
was the proportion of patients with disease control at 
week 12, including complete response (CR), partial 
response (PR), stable disease (SD) and progressive 
disease (PD) according to Response Evaluation Criteria 
In Solid Tumors (RECIST) v1.1 criteria. CR, PR and SD 
were categorized into the "clinical benefit (CB)" group, 
whereas PD was categorized into the "non-clinical benefit 
(NCB)" group for immunotherapy response evaluation. 
For transcriptome sequencing, each well-preserved fresh 
frozen block was first used to isolate Ribonucleic Acid 
(RNA) using the RNeasy Mini Kit (Qiagen) according to 
the manufacturer's instruction. After the construction of 
RNA-sequencing (RNA-seq) libraries using NEBNext 
Ultra RNA Library (New England Biolabs), 150-bp 
paired-end reads were checked for quality and sequenced 

immunotherapy. The inclusion and exclusion flowchart 
for the patient enrollment in the study is represented 
in Figure. 1. The clinicopathological characteristics of 
these included cholangiocarcinoma patients based on 
immune-related subgroup clustering are summarized in 
Table 1. This retrospective study was approved by the 
our institutional ethics review committee (EK20240068), 
and the written informed consent requirement was 
waived because of the retrospective nature of this study. 
This study conforms to the provisions of the Declaration 
of Helsinki (as revised in 2013) and the provisions of 
the ICMJE recommendations and the CONSORT 2010 
guidelines.

2.2. MRI acquisition

All MR examinations were performed by using a 
3.0-T whole-body MRI system (Discovery MR750; 
GE Medical Systems, Milwaukee, WI) equipped 
with a quadrature body coil. Axial dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) (3D 
liver acquisition with volume acceleration-extended 
volume, LAVA-XV) consisted of non-contrast agent-
enhanced, arterial phase (20-35 seconds), portal phase 
(60 seconds), 3-minute transitional phase and 20-minute 
delayed hepatobiliary phase images. The contrast agent, 
gadolinium diethylenetriaminepentaacetic acid (Gd-
DTPA; Bayer Healthcare, Berlin, Germany) (0.1 mmol/
kg), was automatically administered intravenously at 
the second phase of the DCE-MRI protocol at 2 mL/sec 
by using a power injector system, followed by a 20 mL 
saline flush at the same rate. These images were obtained 
using a breath-hold T1-weighted three-dimensional with 
fat suppression fast spoiled gradient echo sequence. 

Figure 1. The flowchart of cholangiocarcinoma patients' enrollment in the study.
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with Illumina Novaseq (Illumina).

2 .4 .  Immune-re la ted subgroup c lus ter ing for 
cholangiocarcinoma based on transcriptome sequencing 
data
First, RNA-sequencing data from the included 
cholangiocarcinoma patients were first standardized 

for further analysis. Then, immune-related subgroup 
clustering for cholangiocarcinoma was performed by 
using gene set enrichment analysis (GSEA) and the 
K-means algorithm. Briefly, a total of 29 immune-
associated gene sets were chosen to represent tumor 
immunity as previously reported by literature, and the 
gene set variation analysis (GSVA) package was used for 

Table 1. Clinicopathologic characteristics of cholangiocarcinoma patients included in the study

Parameters

Location
     ICC
     ECC
Gender
     Female
     Male
Age (year)
     < 60
     ≥ 60
Tumor size (cm)
     < 3
     ≥ 3 < 5
     ≥ 5
Lesion number
     One
     More than one
Differentiation
     Low
     Medium-low
     Medium
     High
Perineural invasion
     Absence
     Presence
Vascular invasion
     Absence
     Presence
Lymph node metastasis
     Absence
     Presence
CEA (µg/L) median (IQR)
CA199 (U/ml) median (IQR)
TBIL (µmol/L) median (IQR)
DBIL (µmol/L) median (IQR)
HBV infection
     Absence
     Presence
AJCC 8th TNM
     Ⅰ
     Ⅱ
     Ⅲ
     Ⅳ
CD3+ T infiltration
     High
     Low
CD8+ T infiltration
     High
     Low
FOXP3+ T infiltration
     Positive
     Negative

ICC: Intrahepatic cholangiocarcinoma; ECC: Extrahepatic cholangiocarcinoma; CEA: Carcinoma Embryonic Antigen; CA199: Carbohydrate antigen 
199; HBV: Hepatitis B virus; HCV: Hepatitis C virus; TBIL: Total bilirubin; DBIL: Direct bilirubin; AJCC: American Joint Committee on Cancer; 
CD3/4/8: Cluster of differentiation 3/4/8; FOXP3: Forkhead box protein 3; IQR: Interquartile range.

Subgroup 1 (n = 17), n (%)

  9 (52.9)
  8 (47.1)

  6 (35.3)
11 (64.7)

  7 (41.2)
10 (58.8)

  6 (35.3)
  4 (23.5)
  7 (41.2)

16 (94.1)
1 (5.9)

1 (5.9)
  9 (52.9)
  6 (35.3)
1 (5.9)

13 (76.5)
  4 (23.5)

14 (82.4)
  3 (17.6)

15 (88.2)
  2 (11.8)

     2.48 (1.41-3.49)
           6.07 (14.62-331.03)
       13.00 (10.35-77.90)
       2.70 (1.73-36.18)

13 (76.5)
  4 (23.5)

  8 (47.1)
  5 (29.4)
  3 (17.6)
1 (5.9)

13 (76.5)
  4 (23.5)

12 (70.6)
  5 (29.4)

  5 (29.4)
12 (70.6)

Subgroup 2 (n = 17), n (%)

  12 (70.6)
    5 (29.4)

    7 (41.2)
  10 (58.8)

    8 (47.1)
    9 (52.9)

    8 (47.1)
    3 (17.6)
    6 (35.3)

  16 (94.1)
  1 (5.9)

    2 (11.8)
    7 (41.2)
    7 (41.2)
  1 (5.9)

  13 (76.5)
    4 (23.5)

  15 (88.2)
    2 (11.8)

  14 (82.4)
    3 (17.6)

       2.53 (1.57-2.81)
           45.59 (22.77-214.90)
         23.30 (12.00-68.03)
         6.35 (2.33-34.50)

  14 (82.4)
    3 (17.6)

    9 (52.9)
    4 (23.5)
    3 (17.6)
  1 (5.9)

    4 (23.5)
  13 (76.5)

    5 (29.4)
  12 (70.6)

0 (0)
  17 (100)

P

0.29

0.72

0.73

0.78

1.00

0.89

0.99

0.99

0.99

0.94
0.91
0.30
0.25
0.99

0.98

  0.002

0.02

0.04

Immune-related classification



www.biosciencetrends.com

BioScience Trends. 2024; 18(3):263-276.BioScience Trends. 2024; 18(3):263-276. 267

single sample gene set enrichment analysis (ssGSEA) 
of the 29 immune gene sets. K-means algorithm, a 
classical unsupervised learning algorithm of artificial 
intelligence, was used for subgroup clustering in R 
software version 3.6.0 (https://www.r-project.org/) 
by 50 iterations. The total within the sum of square 
and average silhouette width was calculated using R 
package factoextra to determine the optimal number 
of clustering. Afterwards, the ConsensusClusterPlus 
package in R software was used for consensus clustering 
and subgroup screening of ssGSEA scores. In addition, 
a principal component analysis (PCA) plot was also 
drawn to verify the reliability of the consensus clusters. 
In the end, the heatmap package in R software was used 
for heatmap visualization of the ssGSEA scores for the 
aforementioned 29 immune gene sets based on subgroup 
clustering to illustrate the distinct immune characteristics 
of different subgroups.

2.5. Immunohistochemical analysis for the tumor-
infiltrating lymphocytes in cholangiocarcinoma

Streptavidin-biotin-peroxidase staining was performed 
to determine the immune landscape in the tumorous 
tissue of cholangiocarcinoma. Briefly, paraffin 
embedding slides were first deparaffinized, rehydrated 
and pretreated with microwaves and blocking according 
to typical protocols. Then, the slides were incubated 
with a series of primary antibodies against several 
immunological markers overnight at 4°C according to 
the manufacturer's instructions, including CD3, CD8 
and FOXP3. Finally, signals on the slides were revealed 
using 3,3-diaminobenzidine (DAB) buffer as substrate 
after incubation with appropriate horseradish peroxidase 
(HRP)-conjugated secondary antibodies (1:2000; Santa 
Cruz Biotechnology, Inc., Dallas, TX) for 1 hour at room 
temperature. Three most independent and representative 
fields in tissues for each case were selected and 
photographed (×200 magnification) to evaluate the levels 
of T lymphocyte infiltrations with an Olympus digital 
camera. Then, the numbers of infiltrating lymphocytes in 
each field were automatically and recorded as previously 
described (24) using Image pro plus 6.0 software (Media 
Cybernetics Inc.). The averages of infiltration were 
calculated and used for statistical analysis.

2.6. Radiomics workflow

The radiomics workflow in the study mainly consists 
of (1) Lesion segmentation, (2) radiomic features 
extraction, (3) radiomic features reduction and selection; 
(4) radiomic signature/model construction and clinical 
use. The detailed workflow of the radiotranscriptomics 
is schemed in Figure. 2. The 3D Slicer version 4.10.2 
(open-source software; https://www.slicer.org/) was 
used for semiautomatic segmentation. The volume of 
interest (VOI) segmentation and subsequent radiomic 

features extraction for each lesion were performed in 
a blinded fashion by two radiologists with > 10 years' 
experience (reader 1 and reader 2) based on multiple 
images per phase of DCE-MRI, and only indicator lesion 
was delineated if multiple lesions existed. Radiomic 
features extraction was performed by utilizing open-
source Python package Pyradiomics 1.2.0 (http://www.
radiomics.io/pyradiomics.html). Both original features 
and wavelet features were extracted in the study. A total 
of 806 radiomic features were generated for each VOI 
based on per phase of MRI, including shape features, 
first-order statistic features, second-order features, higher-
order statistic features and wavelet features. Radiomic 
features reduction and selection were performed to select 
the most informative features to construct radiomic 
models. In the present investigation, three steps were 
adopted to avoid or reduce overfitting and selection 
bias. Firstly, the intra-class coefficients (ICCs) with a 
threshold of 0.95 were used to select the stable features 
that were not easily affected by the process of delineation. 
Then, spearman correlation analysis with a Spearman 
correlation coefficient of 0.75 was performed to reduce 
the redundancy between selected radiomic features. Third, 
the Man-Whitney U test (p < 0.05) was used to identify 
the informative radiomic features that significantly differ 
between the two immune-related subgroups. Lastly, a 
support vector machine with rbf kernel was employed 
to establish the radiomic model. Due to the limited 
sample size, three-fold cross-validation was performed 
and repeated 50 times in the training set. Furthermore, 
the calibration performance was also evaluated by the 
Hosmer-Lemeshow test. To test the predictive power 
of the established radiomic model in immune related 
subgroup classification and immunotherapy, another 10 
cholangiocarcinoma patients with ICB treatment were 
recruited as an independent testing cohort.

2.7. Statistical analysis

For all continuous variables, normal distribution and 
variance homogeneity were first assessed. Those with a 
normal distribution were expressed as mean and standard 
deviation (mean ± SD), while those with non-normal 
distributions were expressed as medians and interquartile 
range. The inter-group statistical differences for 
numerical variables were determined by the t-test (normal 
distribution), the Mann-Whitney U test/ or Wilcoxon 
Rank Sum tests (non-normal distribution), while the chi-
square test or Fisher's exact test was used for categorical 
variables. Inter-observer agreement was used to assess 
the reliability of the MRI evaluation using the Kappa 
test, and the performance of the developed radiomic 
model based on DCE-MRI in immune profiling for 
cholangiocarcinoma was quantified by receiver operating 
characteristic (ROC) curve analysis and justified by 
the calibration curve. The area under the curve (AUC) 
of the ROC curve, classification accuracy, sensitivity 
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and specificity were also calculated by using Python 
(Version 3.6, https://www.jianshu.com/p/b48d6bad9aaf) 
for constructed radiomic model. The above statistical 
analyses were conducted using the software Python 
(Version 3.6, https://www.jianshu.com/p/b48d6bad9aaf) 
and IBM SPSS Statistics v. 20.0 (Armonk, NY). A P value 
of less than 0.05 is considered as statistically significant.

3. Results

3.1 .  Immune-re la ted subgroup c lus ter ing for 
cholangiocarcinoma based on transcriptome sequencing 
data

For each included cholangiocarcinoma sample (n = 34), 
the gene set variation analysis (GSVA) package was 
used for single sample gene set enrichment analysis 
(ssGSEA) to obtain scores for a total of 29 immune-
associated gene sets representing multiple immune cell 
types, functions and pathways. The K-means algorithm 
was used to determine the optimal cluster number. As 
shown in Figure. 3A and Figure. 3B, corresponding 
to both the turning point on the total within the sum 
of square (elbow method) and maximum average 
silhouette width (Silhouette Coefficient method), k = 
2 was suggested as the optimal number of immune-
related subgroup clustering for cholangiocarcinoma. 

The R package Consensus Cluster Plus was used to 
perform consensus matrix analysis for validation of 
the consensus clustering when k = 2 (Figure. 3C). 
Additionally, the principal component analysis (PCA) 
plots also showed the reliability of the consensus 
clusters based on the subgroup screening of ssGSEA 
scores (Figure. 3D). Ultimately, the distinct immune 
characteristics of the identified two subgroups were 
visualized in a heat map based on the ssGSEA scores 
for aforementioned 29 immune gene sets (Figure. 
3E). As shown, the extent of immune cell infiltration 
in subgroup 1 was remarkably higher than that in 
subgroup 2 (P < 0.05).

3.2. Immune characteristics validation of the identified 
two immune-related subgroups

Based on the aforementioned immune-related 
subgroup clustering for cholangiocarcinoma, an IHC 
assay was performed to validate the differences in 
immune characteristics between the two subgroups. 
Consistent with the results illustrated in the heat map 
mentioned above, subgroup 1 was characterized by 
higher infiltrations for various types of immune cells 
compared to subgroup 2. As shown in the representative 
IHC images (Figure. 4A), for subgroup 1, which was 
considered as an immune-hot subtype, the densities of 

Figure 2. The detailed workflow of radiotranscriptomic analysis in the study. First, a bioinformatics analysis based on transcriptome sequencing 
data was performed to classify the immune-related subgroup, which was used as a label for subsequent radiomic analysis. Second, based on the label 
aforementioned, a radiomic analysis was conducted to establish a radiomic signature model, which mainly consists of VOI segmentation, radiomic 
features extraction, three-step features reduction and selection. Finally, a ROC analysis was performed to evaluate the power of the developed 
radiomic model in the prediction of immune landscape and immunotherapy for cholangiocarcinoma in both the training set and the testing set.
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Figure 3. A bioinformatic analysis for immune-related subgroup clustering for cholangiocarcinoma recruited in the study based on 
transcriptome sequencing data. (A) The curve of the total within sum of squared error under corresponding cluster number k by using elbow 
method reached the "elbow point" when k = 2. (B) The curve of average silhouette width under corresponding cluster number k by using silhouette 
coefficient calculation, and the maximum of average silhouette width was achieved when k = 2. (C) The consensus clustering of immune-related 
subgroup of cholangiocarcinoma when k = 2. (D) The principal component analysis (PCA) plots of clustered samples of cholangiocarcinoma. (subgroup 
1: blue; subgroup2: red). (E) The visualization of the distinct immune characteristics of the classified subgroups based on ssGSEA scores calculated 
by a GSVA package in the form of heat map.

Figure 4. Validation of the immune-related subgroup clustering by IHC assay. (A) Representative IHC images of multiple immune cell 
infiltrations in cholangiocarcinoma for subgroup 1 (upper) and subgroup 2 (lower), including CD3+ T (left), CD8+ T (middle), and FOXP3+ T cells 
(right). (B) The differences of CD3+ T, CD8+ T, and FOXP3+ T cell infiltration in cholangiocarcinoma between subgroup 1 and subgroup 2 were 
summarized in the histogram.
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infiltrating CD3+ T (P < 0.001), CD8+ T (P < 0.001), 
and FOXP3+ T (P < 0.001) were dramatically higher 
than that in subgroup 2 which represented an immune-
cold or immunodeficient subtype (Figure. 4B), 
suggesting a potential sensitivity to immune checkpoint 
blockade (ICB) treatment for subgroup 1 but not 
subgroup 2.

3.3. Extraction and selection of radiomic features derived 
from DCE-MRI images

Before radiomic features extraction, semiautomatic 
segmentation by using the 3D Slicer was first 
performed to delineate the VOI in each phase of 
dynamic contrast enhancement (DCE) images of MRI, 
including non-enhanced phase, arterial phase, venous 
phase and delayed phase. A total of 806 radiomic 
features were generated per lesion in each phase of 
DCE-MRI, including shape features (n = 14), (b) first-
order statistics (n = 18), (c) gray-level co-occurrence 
matrix (GLCM) features (n = 24), (d) gray-level 
dependence matrix (GLDM) features (n = 14), (e) 
gray-level run-length matrix (GLRLM) features (n = 
16), (f) gray-level size-zone matrix (GLSZM) features 
(n = 16) and wavelet features (n = 704). A three-step 
procedure for radiomic features reduction and selection 

were utilized to select the most informative radiomic 
features for immune related subgroup classification 
for cholangiocarcinoma based on each phase of DCE-
MRI, including ICC analysis, spearman correlation 
analysis and Man-Whitney U test. In the end, a 
total of 10 radiomic features were selected to build 
the model. The detailed outcome for each radiomic 
features reduction and selection step is flowcharted 
in Figure. 5. To illustrate the differences in predictive 
radiomic features between subgroup 1 and subgroup 
2. Representive DCE-MRI images, including the non-
enhanced phase, arterial phase and portal venous 
phase, are presented in Figure. 6. The original DCE-
MRI images are shown in Figure. 6A, and the upper 
row and the lower row is for subgroup 1 and subgroup 
2, respectively. The generated images depicting the 
activities of predictive radomic features within the 
VOI from representative cholangiocarcinoma patients 
from subgroup 1 and subgroup 2 are placed in Figure. 
6B. As shown, the predictive radiomic feature based 
on MRI images from non-enhanced phase in subgroup 
1 was significantly increased in contrast with that in 
subgroup 2. Especially, in comparison with subgroup 2, 
the predicitive radiomic feature based on MRI images 
from portal venous phase was remarkably enhanced in 
subgroup 1.

Figure 5. The flowchart of radiomic features extraction, reduction and selection. First, the delineation of VOI in each phase of DCE-MRI 
for all the included cholangiocarcinoma patients was performed by using 3D Slicer, including the non-enhanced phase, the arterial phase, the 
venous phase and the delayed phase. Second, a total of 806 radiomic features were generated per lesion in each phase of DCE-MRI for individual 
cholangiocarcinoma patients. Then, to select the most informative radiomic features to build the radiomic model, three-step radiomic features 
reduction (ICC analysis, spearman correlation analysis and Man-Whitney U test) was performed for each phase of DCE-MRI. In the end, a total of 
10 radiomic features from four phases of DEC-MRI were finally selected.
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3.4. The predictive power of the constructed multivariate 
radiomic  model  in  immune-re la ted  subgroup 
classification for cholangiocarcinoma

A support vector machine with rbf kernel was employed 
to establish the radiomic model by using the finally 
selected 10 radiomic features. The ROC curve (Figure. 
7A) and the decision curve (Figure. 7B) were drawn to 
evaluate the predictive power of the developed radiomic 
model in immune related subgroup classification for 
cholangiocarcinoma. In order to make the results stable 
and reliable, three-fold cross-validation was performed 
and repeated 50 times in the training set. As shown, the 
mean AUC of the ROC curve for the training set was 
0.80 (95% CI 0.64-0.93), with a classification accuracy 
of 76.47%, a classification sensitivity of 70.59% and 
a classification specificity of 82.35%. In addition, the 
50 prediction results of every patient in the training/

validation set based on immune-related subgroup 
clusteirng were displayed through the violin box diagram 
(Figure. 7C). As indicated, the predictive probabilities in 
subgroup 1 were dramatically higher than that in subroup 
2 (P < 0.01). The stability of this predictive radiomic 
model was justified by the Chi-Square Goodness-of-Fit 
test (χ2 = 0.233, p = 0.629) and evaluated by calibration 
curve analysis which suggested a high level of stability 
(Figure. 7D).

3 .5 .  The potent ia l  c l in ical  t ransla t ion of  the 
established radiomic model for immunotherapy of 
cholangiocarcinoma

To test the predictive role of the established radiomic 
model in immunotherapy for cholangiocarcinoma, a 
total of 10 cholangiocarcinoma patients who underwent 
both transcriptome sequencing and ICB treatment after 
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Figure 6. Representative multiple-phase images of DCE-MRI in subgroup 1 and subgroup 2 with pseudo-color delineation of predicitve 
radiomic features. (A) The representative original DCE-MRI images from subgroup 1 (upper) and subgroup 2 (lower). The left column is for the 
non-enhanced phase, the middle column is for the arterial phase and the right column is for the portal venous phase. (B) The generated pseudo-color 
delineation of predicitve radiomic features within the VOI of representative cholangicarcinoma patients from subgroup 1 and subgroup 2. The left 
column is for the non-enhanced phase, the middle column is for the arterial phase and the right column is for the portal venous phase.
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surgery with complete DCE-MRI information before 
treatment were included as an independent testing 
cohort. Regression analysis indicated that the individual 
probability of being predicted as immune-hot subgroup 
1 by radiomics based on DCE-MRI was positively 
correlated with corresponding individual immune score 
derived from ssGSEA (Figure. 8A). As exhibited in 
Figure. 8B, the individual predictive probability of 
being recognized as immune-hot subgroup 1 for each 
cholangiocarcinoma patient was calculated by using the 
established radiomic model. Among the 10 candidates, 
patients NO.1 and NO.4 with predictive probabilities 
higher than 0.5 were considered as immune-hot subgroup 

1, whereas other patients with predictive probabilities 
lower than 0.5 were predicted as immune-cold or 
immune-deficient subgroup 2 (Figure. 8B). Expectedly, 
based on the actual therapeutic effect evaluation for 
immunotherapy, patients NO.1 and NO.4 were divided 
into "clinical benefit (CB)" group who were with 
partial response (PR). In contrast, other patients were 
categorized into the "non-clinical benefit (NCB)" group 
with progressive disease (PD). The relationship between 
the status of actual response to ICB treatment (CB vs 
NCB) and the predicted probability of being immune-
related subgroup 1 for individual cholangiocarcinoma 
patient was tested by Mann-Whitney U test (Figure. 8C, 
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Figure 8. The performance of the established radiomic model in an independent testing cohort. (A) As shown in the diagram of regression 
analysis, the predictive probability of immune-hot subgroup 1 by radiomic model based on DCE-MRI was positively correlated with the immune 
scores derived from ssGSEA. (B) The individual predictive probability to be recognized as immune-hot subgroup 1 for each cholangiocarcinoma 
patient in the testing cohort (n =10) was calculated by the established radiomic model. (C) The relationship between the status of actual response to 
ICB treatment (CB vs NCB) and the predicted probability of being immune-related subgroup 1 for was tested by Mann-Whitney U test.

Figure 7. Evaluation of the established radiomic model in prediction of immune-related subgroup classification for cholangiocarcinoma. A 
ROC curve (A) and a decision curve (B) were drawn to evaluate the predictive power of the developed radiomic model. (C) Moreover, the violin 
box diagram displayed the distribution of the repeated 50 times predicted probabilities of being recognized as immune-related subgroup 1. (D) The 
stability of this predictive radiomic model was evaluated by calibration curve analysis.
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P < 0.0001), which further verified that the established 
radiomic signature model was potentially predictive of 
immunotherapy for cholangiocarcinoma.

4. Discussion

Immunotherapy is emerging as a potentially promising 
treatment strategy for cholangiocarcinoma (25). To 
further improve the clinical benefit of immunotherapy 
for cholangiocarcinoma, a noninvasive and accurate 
selection of potentially responsive patient candidates 
prior to treatment is urgently required (26,27). In 
the present investigation, an established radiomic 
signature model based on DCE-MRI was potentially 
predictive of immune-related subgroup classification 
for cholangiocarcinoma, allowing for a noninvasive and 
reliable characterization of local tumor immune landscape 
to guide immunotherapy for cholangiocarcinoma.
 The local immune landscape plays an important 
role in individualized treatment and precision medicine, 
particularly for tumor immunotherapy (5). On the 
one hand, characterization of the local tumor immune 
landscape is needed to guide tumor immunotherapy; 
On the other hand, a comprehensive and precise 
determination of tumor immune status is challenging. 
Currently, immune-related subgroup classification based 
on transcriptome sequencing is becoming a trend to 
predict potential reponse to tumor immunotherapy prior 
to treatment. Especially, distinct immune-associated 
subtypes in human cholangiocarcinoma (22,23,28) and 
hepatocellular carcinoma (27) were reported previously 
based on sequencing data. In our study, two immune-
related subgroups clustering was attained based on tumor 
mRNA sequencing data through a K-means algorithm, 
a classical unsupervised learning algorithm of artificial 
intelligence. These classified two subgroups characterized 
by different immune landscapes represented potential 
responder and non-responder to immunotherapy for 
cholangiocarcinoma, respectively. Multiomic analyses 
also demonstrated a noticeable advantage of personalized 
treatment based on TME profiling over molecular 
targeting therapy based on tumor heterogeneity profiling, 
considering the more feasibility and the longer-lasting 
therapeutic effect of the former than the latter (28-30). 
However, similar to IHC assay and flow cytometric assay 
for tumor immune status determination, transcriptome 
sequencing was also an invasive approach and dependent 
on specimen availability. With the development 
of computing techniques and big data processing 
algorithms, radiomics and derivative radiogenomics or 
radiotranscriptomics based on both medical images and 
sequencing data are emerging as a noninvasive, repetitive 
and reliable method to reveal the underlying biologcial 
and molecular mechanism for heterogeneity reflected in 
radiological features (31,32). Though the studies with 
regard to the biological validation of radiomic findings 
are increasingly required to conduct, we have to keep in 

mind that the level of biological insight and analytical 
tools used in genomics or transcriptomics are largely not 
available for radiomics. As the field of radiomics grows, 
more and more relationships between radiomic features 
and radiomic meaning are being revealed, and a relevant 
database platform is expected to establish.
 In the study, a large amount of radiomic features 
captured in the DCE-MRI images were extracted and 
selected to build a multivariate radiomic signature model 
to predict immune-related subgroup classification. As 
shown in the results of ROC analysis, the constructed 
radiomic signature model was able to discriminate 
between different immune-related subgroups with an 
AUC of up to 0.80. Among the finally selected 10 
radiomic features for construction of the predictive 
model in the study, five of them were from original 
texture features, whereas the other five were from 
wavelet radiomic features. Additionally, the selected 
radiomic features consist of 7 from the non-enhanced 
phase, 2 from the arterial phase and 1 from the venous 
phase. Consistently, it was found that the predictive 
radiomic signature was mainly composed by maximum, 
median, entropy, kurtosis, emphasis, correlation and non-
uniformity. All of these features contributed to reflect the 
heterogeneity captured in the DCE-MRI images from 
different aspects, suggesting that the established radiomic 
model was capable of predicting the immune status 
in TME by quantitively characterizing heterogeneity 
reflected in the DCE-MRI images. Although predictive 
radiomic models based on MRI for immunotherapy were 
already previously reported for several types of cancer, 
such as breast cancer (33), MRI-derived radiomics with 
regard to immunotherapy for cholangiocarcinoma was 
rare. Though investigations conducted by Zhang et als 
(18,19) mainly focused on the relationship between MRI-
derived radiomic signature and immunophenotyping 
and survival for cholangiocarcinoma, only the status 
of PD-1/PD-L1 status and CD8+ T cells infiltration 
were determined to represent the immune profile for 
cholangiocarcinoma. However, patient clustering 
based on a comprehensive characterization of the 
TME to perform subsequent radiomic analysis needs 
to be improved in their studies. In the present study, 
radiotranscriptomics but not radiomics was performed to 
identify the potential association between tumor immune 
profile and developed radiomic signature model based 
on MRI for cholangiocarcinoma. Study from Wang et al. 
(34) also revealed a link between radiomic biomarker and 
TME in breast cancer, consistent with our investigation. 
However, only MRI images from one single phase, 
usually arterial phase, were commonly used to establish 
radiomic signature model by previous investigations 
(17,18). The radiomic model developed in our study was 
based on four phase images of DCE-MRI. Presumably, 
multi-phase DCE-MRI radiomics was able to provide 
more information about heterogeneity in TME in contrast 
with radiomics from single-phase images. As reported by 
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Li et al., machine learning based on multi-phase images, 
DCE-MRI outperformed single-phase MRI in early 
prediction of pathological complete response (pCR) to 
neoadjuvant therapy (NAT) in human epithelial growth 
factor receptor 2 (HER2) positive invasive breast cancer 
(35).
 Noticeably, an independent testing cohort of 
cholangiocarcinoma patients with immunotherapy 
who underwent both tumor transcriptome sequencing 
and DCE-MRI examination prior to treatment were 
also enrolled in the study to validate the predictive 
power of the constructed radiomic signature model in 
immunotherapy for cholangiocarcinoma. As shown, 
the significant relationship between the predictive 
probability of being immune-related subgroup 1 by 
this established model and actual therapeutic response 
state to immunotherapy highly suggested the capacity 
of this model to effectively predict immunotherapy for 
cholangiocarcinoma.
 Apart from MRI-derived radiomics, artificial 
intelligence (AI) techniques based on other clinical 
imaging modalities were also helpful to tumor 
immunotherapy, especially for 18F-Fluorodeoxyglucose 
positron emission tomography/computed tomography 
(18F-FDG PET/CT) imaging (36,37). As known, both 
attenuated tumor immunity and tumor metabolic 
reprogramming, which are also intimately correlated, are 
important hallmarks of tumor (38,39). In our previous 
work, immunosuppression in HCC could be induced by 
metabolic modulation (40). Accordingly, 18F-FDG PET 
images, which could provide metabolic information in 
tumors, is promisingly predictive of the immune profile 
in TME and potentially applied in tumor immunotherapy. 
Consistently, PET-derived radiomics was also reported 
to be able to reveal transcriptomics in cancer (41). 
Furthermore, the predictive roles of AI analysis based on 
PET/CT images in immune profiling, immunotherapy 
response and survival for NSCLC were suggested by 
previous investigations (42,43). With the development 
of immuno-PET techniques and AI techniques, direct 
integration of them is expected to accurately predict 
tumor immunotherapy (44,45).
 Despite the encouraging results in this study, 
several limitations in the current work need to be 
addressed. First, only cholangiocarcinoma patients with 
preoperative DCE-MRI and postoperative transcriptome 
sequencing and IHC staining for immune cell infiltration 
were included, which resulted in a limitied sample 
size for radiomic analysis. However, this primary 
radiotranscriptomic analysis shed light on the biological 
validation of established predictive radiomic models for 
immunotherapy in cholangiocarcinoma, because relevant 
investigation is rare due to the lack of simultaneous 
collection of imaging data and tumor mRNA sequencing 
data for cholangiocarcinoma from other research groups 
and public database, such as the Cancer Genome Atlas 
(TCGA) with imaging information from The cancer 

Imaging Archive (TCIA). Additionally, the potential 
overfitting of this predictive radiomic model was 
prevented by cross-validation with repetition for 50 times 
and inclusion of an independent testing cohort, and the 
analytical results from both the Chi-Square Goodness-
of-Fit test and calibration curve analysis suggested a 
low likelihood of overfitting for this model. For sure, a 
prospective trial in the near future is needed to verify the 
results; Second, limited by the small sample size of this 
single-center study, a further study with a larger training 
cohort and external test cohorts from multi-center was 
warranted to confirm the conclusion obtained in the 
work. Then, TILs representation in cholangiocarcinoma 
specimens was only evaluated by IHC assay, an 
immunologic function assay was not performed to 
analyze the functional status of immune cells in local 
TME. With a sufficient size of specimen, cytometric 
analyses based on fresh isolation of TILs from tissue 
samples would partially address this issue. In the end, a 
comprehensive model involving both radiomic features 
and clinicopathological parameters was expected to 
develop to noninvasively predict the response probability 
to immunotherapy for cholangiocarcinoma.

5. Conclusion

The local tumor immune microenvironment is 
increasingly accepted as a vital factor influencing the 
sensitivity and outcome of tumor immunotherapy. Thus, 
characterization of the immune status in TME prior 
to tumor immunotherapy allows for the selection of 
potentially responsive candidates who would benefit 
from immunotherapy. An immune-related subgroup 
classification based on RNA sequencing data is capable 
of providing comprehensive information for immune 
profiling in cholangiocarcinoma. Furthermore, the 
developed radiomic model based on DCE-MRI in the 
study is potentially applied as a noninvasive, repetitive 
and reliable approach to predict the immune-related 
subgroup classification and response probability to 
immunotherapy for cholangiocarcinoma.
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