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1. Introduction

In recent years, the demand for health management has 
been increasing, leading to rapid growth in the market 
for wearable devices such as smartwatches and fitness 
trackers. These devices, equipped with sensors that 
measure heart rate, sleep patterns, and physical activity, 
serve as tools to help users record their activity levels and 
manage their health. The wearable technology market 
size is projected to grow from $157.94 billion in 2024 to 
$1.41526 trillion by 2032, with an average annual growth 
rate of 31.5% (1).
 The applications of wearable devices are not limited 
to health management and fitness; they also extend to 
gaming, entertainment, fashion, and education, among 
others. The health and fitness sector has the largest 
market share of these devices. The use of wearable 
devices has made people increasingly aware of the 
importance of fitness and health. In particular, wearable 
devices are expected to encourage users to take an 
active approach to their health by providing critical 

health indicators in real time. Moreover, these devices 
are increasingly being used to share information with 
medical facilities and monitor patients' health remotely. 
This allows patients to check their condition and progress 
without visiting a medical facility, which is beneficial for 
those with chronic diseases.
 As the wearable device market grows, research 
using deep learning to effectively utilize the information 
obtained from these devices is garnering attention. 
A type of machine learning, deep learning has seen 
significant advances in fields like image recognition 
and natural language processing with methods such 
as convolutional neural networks (CNN) (2-4) and 
Transformers (5). Deep learning can also be applied to 
time-series data obtained from sensors. When estimating 
a user's level of activity (such as walking or running) 
from measured sensor information, for example, deep 
learning requires actual sensor data and corresponding 
information on the level of activity. By collecting 
accurate data on sensor information and the level of 
activity and training deep learning models with this data, 
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In recent years, the market for wearable devices has been rapidly growing, with much of the demand 
for health management. These devices are equipped with numerous sensors that detect inertial 
measurements, electrocardiograms, photoplethysmography signals, and more. Utilizing the collected 
data enables the monitoring and analysis of the user's health status in real time. With the proliferation 
of wearable devices, research on applications such as human activity recognition, anomaly detection, 
and disease prediction has advanced by combining these devices with deep learning technology. 
Analyzing heart rate variability and activity data, for example, enables the early detection of an 
abnormal health status and prompt, appropriate medical interventions. Much of the current research 
focuses on short-term predictions, but adopting a long-term perspective is essential for further 
development of wearable devices and deep learning. Continuously recording user behavior, anomalies, 
and physical information and collecting and analyzing data over an extended period will enable more 
accurate disease predictions and lifestyle guidance based on individual habits and physical conditions. 
Achieving this requires the integration of wearable devices with medical records. A system needs to be 
created to integrate data collected by wearable devices with medical records such as electronic health 
records in collaboration with medical facilities like hospitals and clinics. Overcoming this challenge 
will enable optimal health management and disease prediction for each user, leading to a higher quality 
of life.
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the models themselves acquire methods with which to 
extract the necessary information for task estimation 
from sensor data. The sensors equipped on wearable 
devices are diverse, including inertial measurement 
unit (IMU) that measure acceleration, gyroscope, and 
magnetic force, electrocardiograms (ECG), heart rate 
sensors, photoplethysmography (PPG) sensors that can 
measure blood oxygen saturation, electromyography 
(EMG) sensors, and mechanomyography (MMG) 
sensors (6-8). There are a wide range of research 
applications for these sensor data, including activity 
estimation, anomaly detection, and disease prediction. 

The combination of wearable devices and deep learning 

enables the recording of daily activities and is expected 
to lead to the early detection and prevention of diseases.

2. Predictions using deep learning

Research utilizing deep learning is advancing to support 
healthcare in areas such as health management, anomaly 
detection, and early disease detection, as shown in Table 
1. Wearable devices can continuously record dynamic 
information from users through inertial sensors, but they 
cannot identify user activities directly. User activities 
need to be estimated based on sensor information. 

This task is called human activity recognition (HAR), 
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Table 1. Overview of studies related to wearable devices and deep learning

Task/Research

Human activity recognition
     Wang K, et al. (9)
     Jiang W, et al. (10)

     Chen Y, et al. (11)
     Zeng M, et al. (12)
     Yen CT, et al. (13)

Stress detection
     Patlar Akbulut F, et al. (17)

Arrhythmias detection
     Lee KS, et al. (18)

     Shashikumar SP, et al. (19)

Seizures detection
     Meisel C, et al. (20)

     Stirling RE, et al. (21)

Parkinson's disease detection
     Camps J, et al. (23)

     Zia J, et al. (24)

Assessment of sleep state
     Cho T, et al. (25)

Sleep disorders detection
     Wang T, et al. (26)

     Ye G, et al. (27)

Dementia detection
     Lim J, et al. (30)

     Saif N, et al.(31)

     Lee H, et al.(32)

     Jeon Y, et al.(33)

                                          Dataset

•  Human Activity Recognition Using Smartphones (35)
•  Human Activity Recognition Using Smartphones (35), 
   USC-HAD (36,37)
•  Dataset containing 31688 samples with 8 activities
•  OPPORTUNITY (16), Skoda (38), Actitracker (39)
•  Human Activity Recognition Using Smartphones (35)

•  Dataset of 312 records from 30 participants

•  Dataset of 28,308 unique patients (15,412 normal 
   and 12,896 with arrhythmia)
•  Dataset of 98 patients (45 with atrial fibrillation 
   and 53 with other rhythms)

•  Dataset of 69 patients with epilepsy (total duration 
   > 2,311 hours, 452 seizures)
•  Dataset of 11 epilepsy patients followed for more 
   than 6 months

•  Dataset of 21 Parkinson's disease patients who 
   manifested freezing of gait episodes
•  Daphnet Freezing of Gait (40)

•  Dataset of 10 subjects sleeping for 8 hours

•  PhysioNet Apnea-ECG dataset (34), University 
   College Dublin Sleep Apnea Database (41)
•  PhysioNet Apnea-ECG dataset (34), University 
   College Dublin Sleep Apnea Database (41), Apnea
   Interventions for Research (42)

•  Dataset of 18 elderly subjects (5 males, 13 females) 
   age 65 years or older
•  Dataset of 33 subjects recruited at the Alzheimer's 
   Prevention Clinic
•  Dataset of 60 subjects (30 cognitively normal and 
   30 with mild cognitive impairment)
•  Gait data from 145 subjects

               Sensors/Signals used

•  Inertial measurement unit (IMU)
•  IMU

•  IMU
•  IMU
•  IMU

•  Electrocardiogram (ECG), electrical 
   conductivity of the skin, oxygen 
   saturation, and blood pressure

•  ECG

•  ECG, photoplethysmography (PPG), IMU

•  Electrodermal activity, body temperature, 
   blood volume pulse, and actigraphy
•  Heart rate, sleep, and step counts

•  IMU

•  IMU

•  IMU

•  ECG

•  PPG

•  Electrical conductivity of the skin, 
   body temperature, and IMU
•  Sleep cycle, heart rate variability, and IMU

•  IMU

•  IMU



www.biosciencetrends.com

BioScience Trends. 2024; 18(3):201-205.BioScience Trends. 2024; 18(3):201-205. 203

models are being developed for various diseases (e.g., 
Parkinson's disease, sleep disorders, and dementia). 
Parkinson's disease is a neurodegenerative disorder 
affecting movement and speech, with symptoms such 
as uncontrollable tremors, muscle rigidity, and slowed 
movements. As an example, studies have proposed deep 
learning models that predict freezing of gait and tremors 
using acceleration and rotational motion information 
measured by IMU (23,24). Sleep quality is crucial for 
health, but identifying problems on one's own is difficult. 
Wearable devices help monitor, measure, and provide 
feedback on sleep states. For example, studies on sleep 
stage identification enable the detection of sleep and 
wake states and quality assessment (25). Sleep apnea 
syndrome, a common breathing disorder, is also detected 
using wearable devices by analyzing ECG and PPG 
signals (26,27). In an aging society, early detection of 
dementia is a crucial issue. Indirect methods are effective 
for early detection and intervention in signs of dementia. 
Research is underway to estimate cognitive decline using 
blood, gait patterns, and voice as indirect information 
to allow inference (28,29). Studies using wearable 
devices have similarly attempted to predict cognitive 
decline using a combination of information from IMU, 
skin conductance, and body temperature to ascertain the 
indirect effects of cognitive decline on the body (30-33).
 Obtaining datasets for predictions related to such 
diseases is a significant challenge. Unlike HAR, the 
difficulty of data collection results in limited available 
data. An open dataset that is beneficial for prediction 
tasks involving clinical data and wearable device 
measurement data is PhysioNet (34). PhysioNet has 
helped to develop wearable devices and deep learning by 
providing physiological and clinical data in many areas, 
including arrhythmias, Parkinson's disease, and cognitive 
decline.

3. Possible applications of wearable devices and deep 
learning from a long-term perspective

Thus far, we have described various areas of predictive 
research using deep learning with information obtained 
from wearable devices. Many studies focus on estimating 
the user's state at a specific time from short-term signal 
information, primarily using CNN-based algorithms. 
While CNNs excel at extracting local patterns and 
features from input signals, they may not be suitable for 
long-term predictions.
 From a long-term perspective, the information 
recorded by wearable devices may contain abnormal 
data with features and patterns related to the user's 
behavior, lifestyle, and disease predictions. Utilizing this 
information can enable predictions of diseases related 
to future lifestyle habits, allowing recommendations to 
improve those habits. Models based on Transformers are 
effective for long-term predictions. Initially proposed 
for natural language processing, Transformers divide 

which can predict and record activities such as sitting, 
walking, lying down, climbing stairs, jogging, running, 
and falling. HAR research is important as it allows 
users to reflect on their actions and habits and consider 
their lifestyle. Various deep learning models have been 
proposed to achieve HAR (9-13). These studies mainly 
use deep learning models based on CNNs. Commonly 
used in image recognition, CNNs are also suitable for 
signal processing. CNNs excel in extracting features 
from short-term signal information and are well-suited 
for regular human activities of a brief duration. One 
reason why HAR is actively researched is the availability 
of abundant datasets. Large amounts of quality data are 
required to make estimates using deep learning. There 
are extensive datasets for HAR, such as the University 
of California Riverside-Time Series Classification 
(UCR-TSC) archive (14), the University of East Anglia 
multivariate time series classification (UEA-MTSC) 
archive (15), and the OPPORTUNITY dataset (16). Each 
dataset includes time-series signals measured by various 
sensors: UCR-TSC has 128 datasets, UEA-MTSC has 30 
datasets, and the OPPORTUNITY dataset includes data 
collected from 12 subjects that consists of 18 types of 
activity information and measurements from 7 IMU and 
12 3D accelerometers.
 In addition to HAR, anomaly detection is also being 
researched. For instance, detecting stress states (17), 
arrhythmias (18,19), and seizures (20,21) are some of the 
approaches being researched to detect abnormal states in 
users. In stress detection research, for example, models 
evaluating stress levels using ECG, skin conductance, 
oxygen saturation, and blood pressure measurements 
have been developed for patients with metabolic 
syndrome. Early intervention is crucial because chronic 
symptoms worsen when these patients are exposed to 
stress. In arrhythmia detection, techniques utilizing 
CNN-based deep learning models to detect arrhythmias 
in PPG and ECG data with a high level of accuracy 
have been proposed. For example, atrial fibrillation is 
asymptomatic in about 10% of cases (22) and it increases 
the risk of stroke and myocardial infarction, so early 
detection is important. Arrhythmia detection research 
has proposed CNN-based deep learning models using 
PPG and ECG data collected from wearable devices 
to detect arrhythmias with an accuracy of over 95%. 
Epilepsy is a neurological disorder affecting the central 
nervous system, causing seizures, limb spasms, and loss 
of consciousness. Research predicts high-risk states of 
seizures using information such as skin conductance, 
body temperature, heart rate, sleep, and steps. Predicting 
seizures allows patients to avoid high-risk periods and 
prepare a safe environment. These studies showcase 
significant technological advances in the early detection 
and rapid response to abnormal states, ensuring user 
safety and health.
 Constantly worn in daily life, wearable devices are 
suitable for monitoring signs of disease. Diagnostic 
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text into meaningful chunks called tokens and learn the 
relationships between these tokens. When Transformers 
is applied to long-term predictions from sensor data, 
meaningful token information needs to be extracted 
from the signals. CNN models built for HAR or anomaly 
detection are effective at extracting these tokens. HAR 
estimation converts signal information into user activity 
data, giving meaning to the signals. Converting sensor 
information into event data for individuals through 
existing HAR and anomaly detection will enable 
the early detection of diseases and the provision of 
personalized lifestyle guidance based on long-term 
event histories. For long-term prediction models to 
become a reality, long-term wearable device data and 
clinical data are necessary, making data collection a 
significant challenge. With the growth of the wearable 
device market, the hope is that new mechanisms will be 
created to collect and record sensor information linked 
to medical and health data. In addition, wearable devices 
will presumably be increasingly used in research that 
guides users' lives from a long-term perspective.

4. Conclusion

The combination of wearable devices and deep learning 
holds great potential for health management and disease 
prevention. These technologies are useful for health 
monitoring, anomaly detection, and even early disease 
detection. As a long-term perspective on data collection 
and analysis is adopted, providing personalized health 
management tailored to individual users will become 
possible. In addition, the accuracy and applicability of 
deep learning models will increase as datasets become 
more comprehensive. Wearable devices will continue 
to increase in predictive value as specific applications 
such as HAR, anomaly detection, and disease prediction 
progress. In the future, balancing efficient data collection 
with privacy protection will be a crucial challenge. 
Overcoming this challenge will allow wearable devices 
to further integrate into daily life, where they will serve 
as essential tools to encourage the health of more people.
 Ultimately, the fusion of wearable devices and deep 
learning provides innovative means to more accurately 
understand individual health conditions and promote 
preventive medicine. This will enable us to lead 
healthier and more fulfilling lives, and it is expected to 
significantly change the nature of healthcare.
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