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Liquid-liquid phase separation: A new perspective to understanding 
aging and pathogenesis
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Liquid-liquid phase separation (LLPS) describes a 
phenomenon whereby proteins and/or nucleic acids in 
a solution separate into a dense phase that resembles 
liquid droplets when their concentration rises above 
a certain level, just like oil drops forming in water. 
The dense phase will form biomolecular condensates 
such as membraneless organelles (MOs). MOs such 
as nucleoli were described as early as the 1830s (1). 
Recently, Keizer et al. found that, outside of cell 
division phases, chromosomes are actually almost liquid 
and that this structure may be formed through LLPS 
(2). Condensates have been reported to have several 
functions including the enhancement or inhibition of 
cellular reactions, sensing changes in the niche (the 
environment surrounding cells in aging tissue), and 
buffering biomolecule concentration (3). In a lot of 
biological processes, condensates play an important 
role and thus condensate assembly, a phase change, 
the quality control system (QCS), and the relationship 
between condensates and aging-related diseases need to 
be understood.

Condensate assembly

When a liquid phase is formed by LLPS, the liquid 
state is maintained by continuous interactions between 
biomolecules in the liquid phase. A common way that 
proteins form a liquid phase is through multivalence 

of phase-separating molecules (4). Multivalence is 
derived from folded interaction domains or intrinsically 
disordered regions (5). Besides proteins, RNAs have 
also been found to be key factors in the formation and 
composition of condensates (6). Cooperation between 
folded protein domains and nucleic acids may be 
necessary for most phase separation processes.
 When condensates begin to assemble, two types of 
molecules are needed, scaffold molecules and client 
proteins. Scaffold molecules have numerous valences 
and play a role in promoting LLPS, and client proteins 
have lower valences and specifically bind to elements in 
the scaffolds (7). Cells employ various mechanisms to 
regulate the formation of condensates. Phosphorylation 
and/or methylation of proteins was reported to change 
the saturation concentration of proteins via post-
translational modification (8,9). That said, LLPS is very 
sensitive to RNA concentrations and cells can control 
transcription to regulate condensates. In addition, other 
factors including temperature, the concentration of 
metabolites, pH, and ions also regulate the formation of 
condensates and cooperate to change them.

Phase change and aging

Although condensates are initially in a liquid phase, 
they will age and change to a more solid phase under 
certain conditions (10). The liquid phase can age into 
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Mounting evidence has suggested that phase separation, and especially liquid-liquid phase separation 
(LLPS), underlies the formation of membraneless organelles, which are supramolecular assemblies 
of proteins and RNA molecules in cells. These membraneless organelles are also called biomolecular 
condensates. Evidence is now growing that condensates, such as stress granules, P bodies, Cajal bodies, 
and nucleoli, play vital roles in biological processes, like RNA storage and processing, signaling 
regulation, transcription regulation, gene regulation, and transport. Conversely, condensates may cause 
diseases, such as neurodegenerative diseases and tumors, when they go wrong. Condensates initially 
have liquid-like properties, but accumulating biological and chemical mutations with age render them 
into a more solid-like state, like amyloids in Alzheimer's disease, Huntington's disease, and Parkinson's 
disease. Research into phase separation is still in its infancy, but this field is a promising avenue for 
treatment of aging-related diseases.
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a gel or glass state. In gelation, the physical crosslinks 
between condensate components reach a percolation 
threshold and the condensate changes to a gel. However, 
condensates are soft glasses themselves and can 
harden into a solid-like state as a result of changes in 
temperature or density. Both a gel and glass state can 
slow down protein dynamics and promote aggregation. 
There are various types of aggregated proteins, such as 
oligomers, amyloid fibrils, and disordered or amorphous 
protein aggregates. A leading villain, amyloid fibrils lead 
to various neurodegenerative diseases; once formed, they 
can become seeds and change other soluble proteins into 
an amyloid state (11). Aging is a two-edged sword: it can 
preserve the biological structure and suppress redundant 
biochemical reactions during stress adaption, but it is 
also linked to various diseases (12). 
 A few factors have been reported to promote 
condensate aging, such as high protein concentrations, 
loss of binding partners, and insufficient water. 
Conversely, increasing the heterogeneity of the protein 
composition in condensates could be a way to suppress 
aging; as an example, adding a few binding partners such 
as RNA and RNA-binding proteins (RBPs) will delay or 
prevent the aging of condensates (13).

QCS for condensates

The QCS has gradually been recognized as an important 
regulator of condensate assembly, disassembly, and 
dynamic equilibrium. Recently, a study suggested that 
misfolding proteins accumulate in condensates and lead 
to aging (14). For example, stress granules combine 
with RNA and operate under stress, and they dissolve 
and release RNA once stress resolves. However, when 
misfolded proteins bind to stress granules, they are 
unable to release RNA (15). The same study found that 
the molecular chaperone 70-kDa heat shock protein 
(HSP70) can prevent the accumulation of misfolded 
protein in stress granules and even disassemble stress 
granules containing misfolded protein; those granules 
change from a liquid state to a solid-like state. In 
addition to chaperones, the ubiquitin-proteasome system 
has also been put forward as a component of the QCS. 
The ubiquitin-proteasome system is reported to play a 
key role in stress granule clearance, but the functions of 
most of the components in this system are still unclear 
(16). Another way to remove misfolded proteins is 
autophagy, which can selectively degrade condensates. 
For example, P62 was reported to be able to disassemble 
ubiquitin-positive stress granules. There are a few 
potential mechanisms that operate in the QCS, but in 
most instances they have not been studied in detail and 
more studies should be conducted to elucidate those 
mechanisms (Figure 1).

Mechanisms by which condensates are involved in 
aging-related diseases

Mounting evidence has indicated that abnormal 
condensate assembly or disassembly will lead to 
various diseases. Numerous diseases, such as tumors 
and neurodegenerative diseases, are driven by genetic 
or epigenetic mutations. A mutation in a LLPS protein 
will not only affect the protein itself but the interaction 
between it and other surrounding condensate proteins. 
Mutations in condensate-forming proteins could inhibit 
the formation of a condensate or affect condensate 
stability by changing the saturation concentration of 
scaffold proteins.
 Abnormal condensate formation leads to various 
diseases. This happens in the following ways. Firstly, 
aberrant condensates disrupt proteostasis. Many 
neurological diseases are caused by mutations in QCS 
factors. For instance, a mutation in an autophagy protein 
led to an early onset neurodegenerative phenotype in 
an experiment with mice (17). Enhancing the QCS 
may be a viable option for preventing aging-related 
diseases. Secondly, aberrant condensates can disturb 
epigenetic gene regulation and heterochromatin 
formation. Abnormal LLPS could affect many epigenetic 
and chromatin regulatory factors and also promote 
oncogenic transformation-related enhancers and gene 
promoters (18). An aging-related abnormality in gene 
expression could be driven by aberrant condensates in 
the nucleus. Keeping condensates in good condition is 
crucial to maintaining tissues and organs, and especially 
in stem cells. Thirdly, aberrant condensates are involved 
in genome instability. Cancer cells frequently carry 
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Figure 1. Functions of condensates. This graph provides an 
overview of the different condensates that have been studied in 
cells to date.
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Conclusions and perspectives for the future

Our understanding of phase separation and biomolecular 
condensates has increased greatly over the past decade, 
but it is still in its beginning stages. The role played by 
many factors and domains in condensate assembly and 
maturation is unclear. In the QCS, a few well-known 
proteins such as chaperones are also key components 
in regulating condensates. Further elucidation of the 
components of the QCS offers promise since it will 
reveal how cells cooperate with condensates and also 
uncover the link between out of control condensates 
and diseases. Numerous studies on aging-related 
diseases have indicated that condensates can promote 
neurodegenerative diseases and cancers by forming 
amyloids, affecting genetic and epigenetic regulation, 
losing the ability to repair DNA, and disturbing signaling 
in cells. Phase separation and condensates have given 
us new insights into aging-related diseases and unveiled 
new molecular mechanisms of those diseases. This could 
lead to the  development of new diagnostic methods and 
therapies. Moreover, condensates and related factors 
could be new targets for drug development. This offers 
fresh hope for the treatment of intractable diseases such 
as cancers and neurodegenerative diseases.
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Figure 2. LLPS in cells and its relationship to neurodegenerative 
diseases and cancers.
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