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1. Introduction

A novel coronavirus, SARS-CoV-2, caused the global 
coronavirus disease 2019 (COVID-19) pandemic. 
COVID-19 results in substantial levels of morbidity 
and mortality, though a considerable proportion of the 
infected have only mild to moderate symptoms (1-
3). The COVID-19 pandemic poses a massive threat 
to worldwide health along with widespread economic 
disruption, necessitating the urgent development of 
novel antivirals and effective therapeutic options to 
alleviate the disease's adverse outcomes. 
 Given these circumstances, broad-spectrum 
antivirals (remdesivir, lopinavir/ritonavir, etc.) and 
immune-modulators (tocilizumab and dexamethasone, 
etc.) were initially investigated and found to have 
varying degrees of efficacy (4-8). Hopes were raised 
by convalescent plasma therapy, i.e. use of blood from 
recovered patients, but its efficacy had been generally 
proved disappointing due to the lack of standardized 
doses and a consistent titer of active neutralizing 
antibodies (nAbs) (9,10). That said, the use of 
monoclonal antibodies (mAbs) offers a new avenue for 
the treatment of infectious diseases. nAbs are created 
to exclusively bind to the special epitope regions of 
a virus that are indispensable to its cellular entry, 

infectivity, and replication to decrease these events 
(11,12). Neutralizing mAbs serve as potent alternative 
to most of the current treatments for viral infections. 
The outstanding efficacy of nAbs against aggressive 
fatal viruses, like Ebola virus and respiratory syncytial 
virus (RSV) (13,14), substantiate the great potential of 
nAbs to serve as COVID-19 therapies.

2. Targets of SARS-CoV-2 neutralizing mAbs

The surface spike glycoprotein (S protein) on SARS-
CoV-2 is a rational target for nAb-based therapies, as it 
facilitates virus entry into host cells via interaction with 
the cellular angiotensin-converting enzyme 2 (ACE2) 
receptor (15,16). The S protein contains two subunits. 
Its S1 subunit has an N terminal domain (NTD) and 
receptor-binding domain (RBD) (15). Components of 
the S2 subunit promote viral fusion (17). Due to its 
crucial role in facilitating direct viral contact with the 
ACE2 receptor, the RBD is the major target for nAbs 
to block SARS-CoV-2 from entering human cells (15). 
The NTD in the S1 subunit or S2 subunit of SARS-
CoV-2 could likely serve as a potential target for nAb 
as well, but the mechanisms are unclear (18-21).
 A point worth noting, however, is that the structure 
of the S protein fluctuates dynamically in that it has 
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two conformations: a closed state and an open state. In 
the closed ("down") conformation, the three RBDs are 
inaccessible, which sterically hinders binding (22,23). 
In contrast, an RBD that is necessary for SARS-CoV-2 
fusion is exposed in the open ("up") state. (22,24). 
This character of the S protein poses a challenge to the 
development of mAbs that may bind to an RBD but 
fail to neutralize SARS-CoV-2 in vitro. The dynamic 
conformation of the S protein might also directly give 
rise to generation of infectivity-enhancing antibodies 
in patients with severe COVID-19. Most recently, 
researchers found that some anti-NTD mAbs from 
patients with COVID-19 were able to induce the RBD 
to transition into the "up" conformation to enhance the 
binding affinity of the S protein to ACE2 and increase 
the infectivity of SARS-CoV-2. Structural results 
indicated that almost all of the infectivity-enhancing 
mAbs bound to NTD in a similar manner (25), implying 
the imperative need to elucidate the complicated 
etiology of COVID-19.

3. Clinical development of and concerns regarding 
SARS-CoV-2 neutralizing mAbs

To date, a range of technologies has been adopted to 
elicit anti-SARS-CoV-2 nAbs. Most of the promising 
nAb candidates for COVID-19 therapy are generated 
by screening enriched B cells from the peripheral 
blood of convalescent patients (20,26,27). Similarly, 
phagedisplay mediated bio-panning or genetically 
humanized mice immunized with SARS-CoV-2 to 
produce fully human nAbs have been used to identify 
the best candidates (27-29).Some approaches to 
improve availability and pharmacological properties 
have been used during the development of nAbs against 
SARS-CoV-2. VIR-7831, an anti-SARS-CoV-2 nAbs 
from a convalescent patient who recovered from SARS, 
was engineered with mutations and modification of the 
Fc region of immunoglobulin G (IgG) as well as the 
neonatal Fc receptor (FcRn), to increase its affinity, 
extend the antibody half-life, and enhance lung bio-
availability (30). 
 There are concerns about immune enhancement 
of nAbs against COVID-19. Some viral infections, 
including SARS and MERS, exhibit antibody-
dependent enhancement (ADE) (31,32). ADE can 
activate or enhance various categories of processes, 
such as antibody-mediated boosting of viral entry 
and replication, complement activation, and cytokine 
release (33-36). The Fc domain could be modulated 
to attenuate interactions between nAbs and cellular Fc 
receptors, and thus, to minimize ADE-related events. 
A typical example is the evolution of AZD7442, a 
cocktail of two nAbs for treatment of COVID-19 (37). 
Similarly, point mutations (at positions 234 and 235) 
were introduced into the Fc regions of etesevimab 
(JS016) to reduce the risk of ADE phenomenon (38,39).

4. The clinical utility of SARS-CoV-2 neutralizing 
mAbs 

The excellent pre-clinical evidence has given rise to 
accumulated clinical trials of anti-SARS-CoV-2 mAbs 
so far, but a limited number of nAbs have progressed to 
phase 3 trials for COVID-19 therapies (Table 1).
 There are  detai led data  on the eff icacy of 
bamlanivimab and bamlanivimab/etesevimab and 
casirivimab/imdevimab cocktails as therapies for 
ambulatory patients with COVID-19 from Phase 3 
trials. The single nAb bamlanivimab (also known as LY-
CoV555 or LY3819253) and a bamlanivimab/etesevimab 
cocktail (designated as LY-CoV016 or LY3832479), 
derived from convalescent patients by targeting the 
RBD, were developed by Eli Lilly and AbCellera 
(40,41). Bamlanivimab was well tolerated at a wide-
range of doses without serious severe adverse events 
(AEs) (41). Administration of bamlanivimab resulted in 
fewer patients requiring hospitalization and a significant 
decrease in the viral load in patients receiving the 2800-
mg dose (medium dose) in comparison to a placebo, 
but, surprisingly, did not have that effect at 7000 mg 
(a higher dose) (42). This might involve the "prozone 
effect". Thus, the US Food and Drug Administration 
(FDA) issued emergency use authorization (EUA) for 
bamlanivimab to treat patients with mild to moderate 
COVID-19, including those hospitalized (43). Further 
viral load and pharmacodynamic/pharmacokinetic data 
revealed a marked decrease in the log10 viral load on d 
11 in the group receiving a bamlanivimab/etesevimab 
cocktail (bamlanivimab 700 mg and etesevimab 1400 
mg), and this decrease was more obvious than that 
in the group receiving bamlanivimab mono-therapy 
(41). In a Phase 3 trial, the cocktail decreased the risk 
of hospitalization (by 70%) and death (0 vs. 10) in 
patients with COVID-19 (44). Based on the clinic trial 
data, the FDA granted an EUA temporarily authorizing 
administration of the cocktail to treat patients with mild 
to moderate COVID-19 who were at risk of developing 
severe COVID-19; the cocktail's safety and efficacy 
continue to be investigated in hospitalized patients (45).
 Regeneron collaborated with F. Hoffmann-La Roche 
to develop a novel nAbs- casirivimab and imdevimab 
cocktail (REGN10987 and REGN10933) to treat 
COVID-19 (46). This cocktail for ambulatory patients 
reduced the viral load in patients (a 10-fold reduction, 
on average) in different countries compared to that in 
patients receiving a placebo. It also markedly reduced 
the risk of hospitalization by 70% (1200 mg) and 71% 
(2400 mg) (47). Both doses were well tolerated without 
severe SAEs (48). The cocktail has been issued an EUA 
by the FDA for ambulatory patients (49). A similar 
authorization was issued by the European Medicines 
Agency, which recommended it for patients who are at 
risk of developing severe COVID-19 (50,51). 
 Hospitalized patients with COVID-19 are a 
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difficult-to-treat population since they have extremely 
poor outcomes and significant critical care needs 
(52,53). In Phase 2-3 trials, bamlanivimab failed to 
provide a clinical benefit in hospitalized patients (54). 
Like bamlanivimab, a casirivimab/imdevimab cocktail 
did not significantly reduce the risk of death, but the 
RECOVERY trial is ongoing. Several other neutralizing 
nAbs, including VIR-7831, a BRII-196/BRII-198 
cocktail, and SCTA01 (a humanized recombinant 
anti-SARS-CoV-2 mAb), are going to be assessed in 
hospitalized patients with COVID-19 (55).

5. The challenges of SARS-CoV-2 neutralizing mAbs 
in clinical settings

Substantial challenges have hampered clinical trials on 
and use of nAbs to treat SARS-CoV-2. Cost/access is 
one hurdle, as is large-scale manufacturing and storage. 
Since most people with an early infection recover, 
specifying a clinical endpoint with which to gauge 
the benefit relative to a placebo is difficult. Likewise, 
inflammation and coagulopathy may pose a more 
serious threat than viral replication in patients with 
severe disease, so determining the benefit of nAbs in 
that cohort is difficult. 
 There are also concerns about the route of 
administration in clinical settings. Administration via 
IV infusion (e.g., bamlanivimab and the bamlanivimab/
etesevimab and casirivimab/imdevimab cocktails) is 
difficult in a community setting while far easier in 
a hospital. Clearly, oral administration would have 
an edge in an outpatient setting and limit damage to 
respiratory epithelial cells, thus prompting efforts to 
optimize routes of administration (56). Another aspect 
is the timing of nAb administration. Some deaths due to 
COVID-19 in the later stages are reported to be driven 
by infection-related inflammation stimulated by innate 
mediators, e.g. IL-6 (57,58). Thus, early intervention 
with nAbs seems to be necessary when considering the 
delayed initiation of mAbs dose before the effective 
inhibitory concentration is reached in the lung.
 An underlying limitation of nAbs for treatment 
of COVID-19 is the unknown bio-availability of 
passively infused IgG in tissues affected by the disease, 
and especially the lungs. Some patients are likely to 
experience either a nonallergic infusion-related reaction 
or an allergic infusion-related reaction. Infusion-
related reactions could facilitate effector functions, 
including complement-dependent cytotoxicity (CDC), 
opsonization, the classical complement cascade, and 
antibody-dependent cellular cytotoxicity (ADCC), 
to cause a series of symptoms such as itching and 
hypotension (59-61). 
 Another priority consideration is the effect of 
variants that directly make available therapeutics 
substantially reduced. The general approach is to use 
nAb cocktails instead of monotherapy, since the nAbs 
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in a cocktail bind to distinct epitopes corresponding 
to the diversity of the S protein, thus decreasing 
treatment-emergent resistant variants (46). Another 
method is to select nAbs that target conserved epitopes 
indispensable for viral function, e.g., VIR-7831 (62). 
Thus, comprehensive and continued monitoring of 
SARS-CoV-2 variants should remain a priority.

6. Conclusion

Hundreds of neutralizing mAbs in pre-clinical studies 
as COVID-19 therapies have emerged. Evaluation of 
several promising candidates in clinical trials suggests 
that nAbs could serve as an effective therapeutic 
intervention for SARS-CoV-2 in ambulatory patients. 
Nevertheless, there are substantial challenges. The 
efficacy of nAb therapies for hospitalized patients with 
COVID-19 varies, highlighting the concern about anti-
SARS-CoV-2 nAbs treatment in patients who already 
have severe symptoms. In addition, resistant variants 
threat the availability of nAb-based therapeutics. 
Therefore, the importance should be attached on the 
development of nAbs with improved availability and 
increased efficacy. Moreover, anti-SARS-CoV-2 nAbs 
therapies are likely to shed light on development of 
alternative interventions to treat other acute respiratory 
infections.
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