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1. Introduction

Since the first case of the coronavirus disease 2019 
(COVID-19) in Japan was confirmed on January 
15, 2020, the number of confirmed cases has been 
increasing day by day. Although the Japanese 
government declared a state of emergency on April 
7, it does not have a legal force to regulate individual 
activities and remains at only requesting the avoidance 
of outings. Although the spread of the epidemic seems 
to have slowed down, one still needs to remain cautious. 
Needless to say, Japanese economy has been seriously 
shocked and the public interest mainly lies on how the 
number of infected persons transits in the future and 
when the outbreak will converge. Although there already 
exists a rapidly increasing number of statistical analyses 
of the epidemic, the statistical evidence focusing on 
the situations in Japan is still limited except for (1-
3). Therefore, the purpose of this study is to provide a 
statistical evidence regarding the future transition of the 
infectious proportion in Japan, including the intensity 
and timing of the epidemic peak, based on the real-time 
data on the cumulative number of confirmed, recovered 
and deceased persons, shown in Figure 1. Specifically, 

the observations up to about two weeks after the state 
was declared (left panel of Figure 1) is first used to 
prediction under the various scenarios for the effect and 
length of the intervention. Then using the extended data 
that includes more recent observations (right panel of 
Figure 1), the prediction results are validated. 
 We consider the famous susceptible-infected-
recovered (SIR) model (4) for modeling the epidemic 
process as widely adopted in the existing literature 
on COVID-19. However, this deterministic model is 
not necessarily sufficient to explain the variability of 
the transition since the observed number is subject to 
nonignorable randomness. To handle such randomness 
in the data, we employ the state spate models combined 
with the SIR model (SS-SIR model) developed by 
(5,6). The model was originally proposed for statistical 
modeling of the seasonal trend of influenza. The 
advantages of the SS-SIR model are mainly three points; 
(i) the unknown parameters in the SIR model can be 
estimated with little knowledge about the true values 
by adequately using the data information; (ii) future 
prediction of a variety of quantities such as the number 
of infections or the epidemic peak as well as uncertainty 
quantification of the prediction can be carried out easily; 
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(iii) whether the real-time data follows the assumed SIR 
model or not can be assessed through the parameter 
estimate; (iv) the effect of the intervention can be 
estimated by appropriately extending the model. These 
advantages are quite essential because (i) information 
required for modeling the epidemic trend of a new virus 
is scarce, (ii) it is important to compute not only point 
prediction but also interval prediction to understand the 
possible worst and best scenarios of future transition, and 
(iii) understanding if the real-time data actually follows 
the SIR model is critical for the reliability of future 
simulations based on the SIR model.

2. Methods

2.1. Data

We use the numbers of confirmed, recovered and 
deceased persons collected on an open source platform 
(https://www.kaggle.com/lisphilar/covid19-dataset-in-
japan). Although the original data starts from February 
6, the numbers before the end of February are treated 
collectively. This is because the confirmed numbers 
in this period are relatively small and using the data 
from March 2020 would be useful to reliably predict 
the future numbers of infectious persons after May 
2020. Hence, the period of the data used in our analysis 
consists of T = 53 days from March 1 to April 22. We 
use the difference between the cumulative numbers of 
confirmed persons and recovered plus deceased persons, 
denoted by Z(t) for t = 1, … , T, which can be interpreted 
as the number of confirmed persons being infectious. 
It is further assumed that only p (0 < p ≤ 1) fraction of 
infectious individuals can be identified by diagnosis, 
which is called identification rate hereafter. Then we 
define Y(t) as Z(t) = Np × Y(t) where N = 1.265 × 108 is 
the population of Japan, thereby Y(t) is the proportion 
of the infectious population at time t. Regarding the 
specific values of p, we follow the discussion in (1). 
Since (7) reported that 77 persons were confirmed 
among the possible 940 infected population, the 95% 
confidence interval of p is (0.059, 0.105). Based on this 
argument, the results under the following three scenarios 

p = 0.05, 0.1 and 0.2 are compared.

2.2. Statistical model

Here the model proposed by (6) is described. Let S(t), 
I(t) and R(t) denote the proportions of individuals being 
susceptible, infected and recovered population at the time 
t, respectively, satisfying S(t) + I(t) + R(t) = 1. The SIR 
model describes the epidemic over time via the nonlinear 
ordinary differential equations (ODE) given by

      S' (t) = -βS(t)I(t),
      I' (t) = βS(t)I(t) - γI(t),                                          (1)
      R'(t) = γI(t),

where the unknown infection rate β > 0 and removal rate 
γ > 0 control the transition from one compartment to the 
next and jointly determine the epidemic process. Let θ(t) 
= (S(t), I(t), R(t)) define the three-dimensional vector of 
the unobserved true proportion at the time t. To allow 
randomness in the evolution of θ(t), the following model 
is considered:

      θ(t)|θ(t-1) ⁓ Dir(κf(θ(t-1); β, γ)),  t = 1,…, T,      (2)

where Dir(•) denotes the Dirichlet distribution, f(θ(t-1); 
β, γ) is the solution of the deterministic SIR model Eq.(1) 
starting the ODE at θ(t-1) and κ > 0 is the unknown 
parameter controlling the randomness in the evolution. 
In the above model, the conditional expectation of θ(t) 
given the previous state θ(t-1) is f(θ(t-1); β, γ), so the 
distribution of θ(t) is centered around the deterministic 
model Eq.(1). It is noted that the conditional variance 
of θ(t) decreases as κ increases, thus the validity of the 
assumption of the deterministic model Eq.(1) can be 
verified through the estimate of κ.
 Let Y(t) be the observed value of I(t). Since Y(t) is not 
necessarily equal to the true I(t), Y(t) is observed based 
on the following probabilistic model:

      Y(t)|I(t) ⁓ Beta(λI(t), λ(1-I(t))),   t = 1, …, T,       (3)

where Beta(•,•) denotes the Beta distribution and λ 
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Figure 1. The cumulative numbers of confirmed, recovered and deceased persons in Japan from March 1, 2020 to April 22 (left) and to May 
18 (right).
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The SS-SIR model is applied to the Japanese data with 
the three identification rates p. First, we found that the 
estimates of the precision parameters κ and λ are very 
large. For example, the point estimates are λ = 1.76 × 
105 and κ = 3.00 × 105 for p = 0.1 indicating that the 
deterministic SIR model explains the transition of the 
real-time data well. Table 1 reports the estimates and 
95% credible intervals of the representative parameters. 
Under the three settings for p, the point estimates of β 
are between 0.20 and 0.25 and those of γ are between 
0.13 and 0.17. The estimates of the basic reproduction 
number R0 are between 1.42 and 1.49. For p = 0.1, for 
example, the 95% credible interval of R0 is (1.20-1.65). 
The estimates of PI and PT appear to vary depending 
on the identification rate. Figure 2 reports the future 
predictions of the proportion of the infectious proportion 
under the three identification rates. The figure allows 
us to easily understand the degree of uncertainty in 
prediction, and worst and best scenarios for the future 
epidemic process through the interval prediction. It 
is seen that the predicted timing of the epidemic peak 
and peak intensity depend on the identification rate 
through the differences in the estimates of PT and PI. 
Specifically, the point predictions of the trajectory of 
the infectious proportion have the timing of the peak 
on July 19, July 21 and August 1 with the intensities 
and 95% prediction intervals of 3.84% (1.23%-7.37%), 
2.60% (0.42%-6.40%) and 2.25% (0.19%-6.14%) for 
p = 0.05, 0.1 and 0.2, respectively. The sensitivity of 
prediction results with respect to p was also found in 
(1), but that under our setting of p is far less dramatic. 
Moreover, all the scenarios predict that the epidemic 

> 0 is an unknown parameter having a similar role 
to κ in Eq.(2). The statistical model for Y(t) with the 
combination of Eq.(2) and (3) is seen as a state space 
model.
 The unknown parameters in the model are the two 
parameters β and γ in the SIR model and two scale 
parameters κ and λ that control the randomness in the 
two equations Eq.(2) and (3). The estimation of these 
parameters and future prediction is conducted within 
the Bayesian framework in which we assign prior 
distributions for these parameters and compute the 
posterior distribution via the Bayes rule. Due to the 
complexity of the model, the analytical derivation of the 
posterior distribution is not feasible. Instead, we rely on 
the simulation-based method known as Markov Chain 
Monte Carlo (MCMC) algorithm (8) to generate random 
numbers from the posterior distribution. Then the 
parameter estimates are calculated and future prediction 
is carried out based on the output of the MCMC 
algorithm.
 Regarding the prior distributions, we assign slightly 
non-informative priors to reflect the uncertainty about the 
new epidemic and let the data tell the truth adequately. 
The details of the settings of the prior distributions and 
algorithm are provided in Supplementary Material (http://
www.biosciencetrends.com/action/getSupplementalData.
php?ID=67).

3. Results

3.1. Prediction of epidemic peak

Table 1. Estimates and 95% credible intervals of parameters of the SS-SIR model under the three identification rates p.

Parameter
    β
    γ
    R0  (= β/γ)
    PT
    PI (%)

Description
Infection rate
Removal rate
Basic reproduction number
Peak timing
Peak intensity

p = 0.05
0.20 (0.12- 0.32)
 0.13 (0.07 - 0.24)
 1.49 (1.30 - 1.70)
156 (105 - 249)

4.55 (1.86 - 7.92)

Estimate (95% interval)

 p = 0.1
  0.25 (0.13 - 0.47)
  0.17 (0.09 - 0.39)
  1.42 (1.20 - 1.65)

151 (96 - 255)
   3.46 (0.77 - 7.20)

p = 0.2
   0.25 (0.14 - 0.53)
   0.17 (0.09 - 0.44)
   1.42 (1.19 - 1.65)

160 (97 - 261)
   3.34 (0.68 - 7.22)

Figure 2. Results of the prediction of the proportion of the infectious population with p = 0.05 (left), 0.1 (center) and 0.2 (right). The 
observed data points {Y(t), t = 1, …, T} are shown by the black circles.

〈

〈
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peak comes during the summer 2020. This result is also 
consistent with (1).

3.2. Effect of intervention

On April 7, 2020, the Japanese government declared a 
state of emergency aiming at reducing human contacts 
by 80%, which is considered to be sufficient to terminate 
the epidemic. However, the government reports that the 
actual reduction is still limited to around 60% or 70% 
(https://corona.go.jp), mainly because the state does not 
have a legal force to regulate individual activities. Also, 
the Japanese government was initially planning to lift the 
state on May 6, but the public concern lay on whether 
such a short period of the state of emergency is sufficient 
or not.
 Through simulation, we here assess the efficacy of 
further intervention and public awareness on mitigating 
the infection risk under various scenarios. Specifically, 
we consider various settings for the degrees of reduction 
in human contacts that are achieved by the government 
during the intervention and by the public awareness 
after the intervention, and the period of intervention 
denoted by T*, under the state of emergency and predict 
the future epidemic transitions. Here, we focus on p 
= 0.1. The results under p = 0.05 and 0.2 are found in 
Supplementary Material (http://www.biosciencetrends.
com/action/getSupplementalData.php?ID=67). It is 
recognized that the realization of the effect of reducing 
human contacts takes about two weeks since the 
incubation period of COVID-19 is at most 2 weeks as 
reported by World Health Organization. Since April 22, 
the last date in the real-time data, is almost two weeks 
after the declaration of the state of emergency, we 
assume that the infection rate changes from β to cβ from 
April 23. For the degree of reduction in human contacts, 
the following six scenarios are considered: c = 0.6, 0.5, 
0.4, 0.3, 0.2 and 0.1 If 80% reduction of human contacts 
was achieved, the reality would have corresponded to c = 
0.2 or 0.1. In view of the current situation, however, c = 
0.4 or 0.3 would be closer to the reality. We also suppose 
that the intervention will continue for T* days from April 
23 with the three scenarios, T* = 14, 28 and 45. Note that 
T* = 14 corresponds to May 6 on which the government 
was initially planning to lift the state. The other two dates 
to respectively correspond to the two-week and one-
month extension of the intervention that continue until 
May 20 and June 6, respectively. We further suppose 
that the infection rate becomes c* after the intervention 
period with the three scenarios: c* = 1, 0.9 and 0.8. The 
first scenario implies that the level of human mobility 
after the intervention returns to the original level before 
the intervention. The latter two scenario can reflect the 
remaining strain in the public awareness on mitigating 
the spread of infection through, for example, voluntary 
avoidance of outings and social distancing.
 Figure 3 presents the nine panels on the future 

prediction under the combinations of the three scenarios 
of each T* and c*. Comparing the different scenarios of 
T*, the figure reveals that setting c to smaller values is 
effective only when it is combined with larger T*. For 
example, the left upper panel of Figure 3 exhibits little 
differences among the six choices of c when c* = 1 and 
T* = 14. Contrary, the small values of c such as c = 0.2 
with T* = 28 and 45 can lead to a convergence of the 
epidemic. Under c = 0.2 and c* = 1, the epidemic can be 
terminated in terms of point prediction when T* = 45, 
while the epidemic peak belatedly comes on September 3, 
2020 with 2.2% of the peak intensity when T* = 14. The 
result suggests that the termination of the intervention 
due to the initial plan of lifting the state of emergency on 
May 6 would have been too early and only resulted in a 
slight delay in the epidemic peak and a slight reduction 
in the peak intensity.
 The degree of reduction in β after the intervention, 
c*, also has a dramatic effect on the consequence of 
the epidemic. The upper panels of Figure 3 show that 
the efficacy of the temporary reduction in β under the 
intervention can be quite limited if β returns to the 
original level after the intervention. In contrast, if at least 
20% reduction in β can be achieved for a sufficiently 
long period of time after the intervention, the epidemic 
can be effectively suppressed. In the case of c* = 0.9, 
for example, the peak intensity is more than halved to 
1.11% with the peak on September 13 even under the 
mild degree of intervention for a short period of time (c 
= 0.6 and T* = 14). When a longer intervention T* = 45 
is carried out, the peak is further delayed to November 
11 with 0.81% of the peak intensity. Furthermore, in the 
case of c* = 0.8, the figure shows the epidemic is almost 
completely suppressed in terms of point prediction 
regardless of the degree of intervention and length of 
intervention period. This would be because that the 
infectious proportion decreases during the intervention 
and the reproduction number under c* = 0.8 remains 
close to one even after the intervention. To summarize, 
our results show that not only the degree of reduction in 
β during the intervention but also and more importantly 
the length of intervention and the long-term level of β 
after the intervention is critical to control the spread of 
the epidemic.
 Figure 4 presents a more detailed picture of the 
prediction results around the dates indicated by T*. 
The figure shows that there are scenarios under which 
the proportion of the infectious population comes to 
increase again as the infection rate changes from cβ to c*. 
Whether there will be another wave generally depends 
on the combination of c, T* and c*, but there most likely 
would have been to see a rise in the infectious proportion 
in the case of T* = 14. In the figure, the more recent 
observations between April 23 and May 18 are also 
plotted. The figure shows that the predicted trajectories 
do not seem to follow well the stationary and reduction 
in the infectious proportion due to the sudden change 
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in the infection rate under the scenarios. It seems that 
the decline in the trajectories in the case of c = 0.6 
appear to resemble the actual rate at which the observed 
infectious proportion decreased. In the following section, 
a modified model is estimated using an extended dataset 
to validate our prediction method. 

3.3. Validating the prediction results

As requested by one of the reviewers, the dataset is 
updated to include more recent observations. Given 
that the unsettled epidemic situation, the Japanese 
government has decided to postpone the lifting of the 
state until the end of May (T = 79). On May 14, the 

state was partially lifted for the 39 prefectures among 
out of where the situation is somewhat milder. For the 
remaining 8 prefectures, the government is planning 
to lift the state by the end of May. Using the updated 
dataset, the effect of the intervention can be estimated 
based on a modified version of the model Eq.(2) and the 
foregoing prediction results can be validated. Based on 
the current plan of the government, the infection rate β 
is assumed to become cβ, 0 < c < 1, from April 23 as in 
Section 3.2, but now c is estimated from the data. The 
estimate of c stands for the effect of the intervention 
under the state of emergency. 
 For p = 0.1, the point estimate of c is 0.583 with the 
95% credible interval (0.307-0.787). Therefore, this 

Figure 3. Future prediction under the nine combinations of T* (the period of the intervention) and c* (the multiplier for β after the 
intervention) for p = 0.1. The red, black and grey curves respectively represent the future point prediction without intervention shown in Figure 2, 
point prediction under each scenario and upper bounds of the 95% prediction intervals. The black circles represent the observed data points. The 
grey vertical lines indicate the dates on which there is a change in the infection rate represented by c*. 
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estimate is consistent with the conjecture in Section 3.2 
that the actual reduction in human contact under the 
intervention is by about 40%. The estimate for R0 is 1.482 
(1.273-1.723). Our estimate for R0 remains unchanged 
even when the data include more recent observations. 
The estimate of the effective reproduction number cR0 
during the intervention period is 0.854 (0.495-1.091). 
Although the upper bound of the 95% credible interval 
of cR0 slightly exceeds one, the posterior distribution 
is concentrated mainly below one, implying that the 
epidemic would progress towards convergence if the 
value of c continues to remain around our estimate. Some 
more details are found in Supplementary Material (http://
www.biosciencetrends.com/action/getSupplementalData.
php?ID=67). 

 As in Section 3.2, the future trajectories of the 
infectious proportion are simulated under the following 
scenarios. The infection rate remains to be cβ until 
T* days from May 18 where T* = 13, 27, 43 and 74, 
corresponding to May 31, June 14, June 30 and July 
31. Then it becomes c*β with c* = 1,0.9 and 0.8 after 
the intervention period. Figure 5 presents the predicted 
infectious proportions under the various scenarios. 
Similar to Figure 3, a smaller c* combined with a larger 
T* will suppress the epidemic. While the estimate of 
c* implies that the intervention is successful to some 
extent, the prediction results suggest the possibilities 
of a second wave in the case of, for example, c* = 1 
and T* = 13. Finally, Figure 6 provides a more detailed 
picture of Figure 5 around the dates indicated by T*. It 

Figure 4. Details Figure 3. around the dates on which the infection rate changes according to c*. The curves represent the future point 
prediction. The black circles are the observed data points up to April 22 and white circles are the observed data points additionally obtained after 
April 22 up to May 18. The grey vertical lines indicate the dates on which there is a change in the infection rate represented by c*.
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is seen that the infectious proportions are successfully 
suppressed until the day on which c changes to c*. The 
rate at which the infectious proportions decline naturally 
follows that at which the observed proportions decline. 
As in the previous analysis, the infectious proportions 
are most likely predicted to rise again after those change 
points. Since a further extension of the intervention does 
not seem very feasible under the recent decline in the 
newly confirmed cases and the public pressure caused 
by the economic crisis, controlling the post-intervention 
infection rate represented by c* is critical as in the 
previous prediction results. 

4. Discussion

In this research, we have employed the probabilistic 
version of the famous SIR model, called SS-SIR 
model, to model the real-time data on the infectious 
population of COVID-19 in Japan. The advantage of 
the SS-SIR model is that we can obtain not only future 
point prediction but also uncertainty quantification 
through, for example, the future prediction intervals. 
The basic reproduction number R0 is estimated to be 
approximately between 1.4 and 1.5 in this study. This 
is smaller than the estimate of 2.6 in (1) obtained from 
the SEIR model applied to the early stage data in Japan. 
Note, however, that (1) did not estimate the removal 
rate and onset rate but fixed their values to those found 
in the existing studies. We also confirmed that the 
estimate of R0 remains unchanged even when the model 
is estimated by using the extended dataset. Moreover, 

our estimate in the case of Japan is also smaller than 
those reported from the case studies in China (9-14). 
Our result may have reflected the fact that the number 
of cases in Japan does not increase as rapidly as other 
countries (15). 
 Through the future prediction under the various 
scenarios on the possible reduction in the infection rate 
β and the length of the intervention period, we have 
obtained the following epidemiological insights:
 ● Even if a large reduction in the infection rate could 
be achieved during the intervention period (e.g. the state 
of emergency), the convergence of the epidemic can still 
depend on the long-term value of the infection rate c*β 
after the intervention. 
 ● As long as the value of c*β can be maintained to 
be slightly smaller even after the intervention period 
than the value of β before the intervention (c* < 1), 
there is a possibility that the epidemic terminates with a 
significantly smaller epidemic size than the case without 
intervention. 
 ● Using the extended dataset ,  the effect  of 
intervention under the state is about 40% reduction in 
the infection rate. 
 These findings confirm that the intervention under 
the state of emergency and its extension has been 
successful to suppress the epidemic to some extent. 
Under the public pressure, the government will most 
likely lift the state for all prefectures by the end of 
May. Our findings suggest that a long-term effort to 
control the infection as indicated by the parameter c* is 
indispensable. 

Figure 5. Future prediction under the combinations of T* (the 
period of the intervention) and c* (the multiplier for β after the 
intervention) for p = 0.1 using the extended dataset. The black and 
grey curves respectively represent the future point prediction under  
each scenario and upper bounds of the 95% prediction intervals. The 
grey vertical lines indicate the dates on which there is a change in the 
infection rate represented by c*.

Figure 6. Details Figure 5 around the dates on which the infection 
rate changes according to c*. The black and grey curves respectively 
represent the future point prediction and 95% prediction intervals. The 
black circles represent the observed data points along with the 95% 
credible intervals. The grey vertical lines indicate the dates on which 
there is a change in the infection rate represented by c*.
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