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1. Introduction

Helicobacter pylori infection of the human stomach 
is associated with chronic gastritis and gastric ulcers 
and has a strong correlation with gastric cancer (1-4). 
Motility by means of a tuft of sheathed, unipolar flagella 
is an essential colonization factor (5,6). The flagellum 
has two major components, the cell wall-embedded 
basal body, that spans both inner and outer membrane, 
and the extracellular filament composed of flagellins 
(7). The basal body consists of the cytoplasmic C-ring, 
the MS (membrane and supramembranous) ring, the 
rod, the export apparatus and the stator. The basal body 
serves as a rotary motor that spins the filament, with 
the energy for rotation derived from the proton-motive 

force (8). Rotation is driven by the interaction of the 
C-ring with several circumferentially positioned stator 
complexes, composed of the cytoplasmic protein MotA 
and peptidoglycan-anchored MotB (7,9,10). 
 Whilst it is well understood that MotA/MotB 
complex functions as a proton channel that does bind 
efficiently to the cell wall and is 'plugged' until it 
incorporates into the motor (11-14), little is known 
about the mechanism by which the stator assembles 
around the rotor and switches into a proton-conducting 
state. Previous studies of the flagellar motor in 
Salmonella and E. coli suggested that conserved protein 
FliL, which contains a single transmembrane helix and 
an approximately 150 a.a. long periplasmic domain, 
plays an important role in the stator assembly, as it has 
been shown to interact with the stator proteins MotA 
and MotB, as well as the rotor components FliF (MS 
ring) and FliG (C ring) (15). Deletion of Salmonella 
fliL caused only a small reduction in swimming, but 
eliminated swarming (16). It is thought that FliL is 
required for Salmonella swarming, when the motor 
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must produce sufficient torque to move through 
viscous mediums (high load), because it enhances the 
interaction between MotA and MotB, increases the time 
that the stator is engaged with the rotor and/or improves 
the efficiency of proton flow through the motor (15). In 
addition, it has been suggested that FliL may assist the 
release of the MotB plug helices from the membrane 
and thus activate the stator complexes upon their 
assembly into the motor, as point mutations within the 
plug suppressed the motility defect of the Salmonella 
∆fliL mutant (15).
 The deletion of the fliL gene in Rhodobacter 
sphaeroides impaired its motility (17). It has been 
proposed that in R. sphaeroides, FliL, together with 
MotF, promotes the opening of the proton channel 
through FlgT, which interacts with MotB and triggers 
the release of the plug (18-20). Similarly, a fliL mutant 
of Caulobacter crescentus had non-functional flagella, 
indicating the essential role of FliL in flagellar rotation 
(21). FliL defect in Proteus mirabilis resulted in the 
impairment of motility and the synthesis of flagellin 
proteins, and it has been suggested that P. mirabilis FliL 
may also serve as a surface sensor that regulates the 
gene expression (22-24).
 In Borrelia burgdorferi, the deletion of FliL altered 
the periplasmic flagellar orientation and caused motility 
impairment (25). Crucially, cryo-electron tomography 
of the B. burgdorferi flagellar motor revealed that 
FliL is located between the rotor and the stator (25), 
a position consistent with the hypothetical role of 
FliL in the assembly and/or stabilization of the stator 
around the rotor. Similarly, in the recent cryo-electron 
tomography study of the H. pylori flagellar motor, the 
putative FliL ring is clearly seen between the MS ring 
and the stator, although the role of FliL in the motor 
function in H. pylori remains to be established (26). 
 FliL shares no significant sequence similarity to any 
protein of a known structure. However, it is anticipated 
that determination of the crystal structure of its soluble 
periplasmic domain will provide a critical insight into its 
function through identification of functional homologues 
with a similar fold, as protein structure is more conserved 
than sequence. The production of the crystals of the 
periplasmic domain of FliL from Vibrio alginolyticus 
was reported (27), but no structure is available yet. Here, 
we report the cloning, purification, crystallization and 
the preliminary X-ray crystallographic analysis of the 
C-terminal periplasmic domain of H. pylori FliL.

2. Materials and Methods

2.1. Gene cloning and overexpression

The membrane topology and disordered regions of FliL 
from H. pylori strain SS1 (Genbank ID AQM65563.1) 
were predicted by using the TOPCONS (http://topcons.
net/) (28) and DISOPRED3 (http://bioinf.cs.ucl.ac.uk/

disopred) (29) servers, respectively (Figure 1). The 
coding sequence for the C-terminal domain of FliL 
(FliL-C, comprising amino-acid residues 81-183) was 
codon optimized for expression in Escherichia coli, 
synthesized and ligated into the pET151/D-TOPO 
vector (Invitrogen, Waltham, MA, USA) by GenScript 
(Piscataway, NJ, USA) to produce an expression vector 
that harbors an N-terminal His6 tag followed by a 
tobacco etch virus (TEV) protease cleavage site. The 
109-residue recombinant protein used for crystallization 
comprised residues 81-183 of FliL plus six additional 
residues from the TEV cleavage site (GIDPFT). 
 Escherichia coli strain BL21(DE3)-RIPL cells 
(Stratagene, La Jolla, CA, USA) were transformed 
with the expression vector and cultured at 37°C in LB 
medium containing 50 mg/L ampicillin. Overexpression 
of FliL-C was induced with 1 mM isopropyl-D-1-
thiogalactopyranoside at an OD600 of 0.6. The cells were 
grown for a further 4 h at 37°C and then harvested by 
centrifugation at 4,800 g for 15 min at 4°C. 

2.2. Purification and determination of the oligomeric 
state

Protein was purified by following the procedure based 
on that described in (30). Briefly, the cell pellet was 
resuspended in buffer A (20 mM Tris-HCl pH 8.0, 150 
mM NaCl, 1 mM phenylmethanesulfonyl fluoride) and 
lyzed using an Avestin EmulsiFlex-C5 high-pressure 
homogenizer (Avestin, Ottawa, Canada). Cell debris 
was removed by centrifugation at 10,000 g for 20 min 
(4°C). NaCl and imidazole were then added to the 
supernatant to final concentrations of 500 and 10 mM, 
respectively, after which the supernatant was loaded 
onto a 5 mL Ni-NTA affinity column (GE Healthcare, 
Chicago, IL, USA) pre-equilibrated in buffer B (20 mM 
Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole), 
washed with 10 column volumes of the same buffer and 
eluted with buffer C (20 mM Tris-HCl pH 8.0, 500 mM 
NaCl, 500 mM imidazole). The hexahistidine tag was 
cleaved off using TEV protease (Invitrogen, Waltham, 
MA, USA) while dialyzing the sample against buffer 
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Figure 1. The predicted membrane topology of H. pylori 
FliL and the boundaries of the periplasmic domain CtaB 
FliL-C characterized in this study.
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A11, which contained 1.0 M ammonium phosphate 
monobasic and 0.1 M trisodium citrate dehydrate pH 
5.6. Optimization of the condition to improve the crystal 
quality yielded thin plate-like crystals using 0.4 M 
ammonium phosphate monobasic and 0.1 M trisodium 
citrate dehydrate pH 5.6 and a protein concentration of 
12 mg/mL. These crystals had maximum dimensions of 
0.1 × 0.03 × 0.02 mm.  

2.5. Data collection and processing

Prior to data collection, the FliL-C crystals were 
briefly soaked in a cryoprotectant solution (0.48 M 
ammonium phosphate monobasic, 0.12 M trisodium 
citrate dehydrate pH 5.6, 20% (v/v) glycerol), and then 
flash-frozen by plunging in liquid nitrogen. A complete 
X-ray diffraction data set was collected to 2.8 Å from 
a single cryo-cooled crystal on the MX1 beamline 
of the Australian Synchrotron. A total of 360 images 
were collected using a 0.5° oscillation. The data were 
processed and scaled using XDS (34) and AIMLESS 
from the Collaborative Computational Project, Number 
4 (CCP4) suite (35). Data collection and processing 
statistics are summarized in Table 1. Calculation of 
the self- rotation function was performed using the 
POLARRFN program (35).

3. Results and Discussion

H. pylori FliL (183 a.a.) was predicted to contain one 
N-terminal transmembrane (TM) helix (amino-acid 
residues 20-40), with the protein's amino-terminus 
in the cytoplasm, followed by a disordered linker 
region (residues 41-85) connecting the TM helix to the 
periplasmic domain (Figure 1). For the purpose of protein 
production for crystallization, the domain boundaries 
of the recombinant periplasmic domain FliL-C have 

D [20 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM 
dithiothreitol, 1% (v/v) glycerol] at 10°C overnight. 
NaCl and imidazole were then added to the sample to 
final concentrations of 500 and 20 mM, respectively, 
and the TEV protease and the uncleaved protein were 
removed by passing the sample through the Ni-NTA 
column. The flowthrough was concentrated to 2 mL in 
a VivaSpin 10,000 Da cutoff concentrator and passed 
through a Superdex 200 HiLoad 26/60 gel-filtration 
column (GE Healthcare) equilibrated with buffer E 
(10 mM Tris-HCl pH 8.0, 150 mM NaCl). Protein 
concentration was determined using the Bradford assay 
(31), and protein purity was evaluated using SDS-
PAGE. The oligomeric state of FliL-C in solution was 
determined by calculating the molecular weight (MW) 
using a calibration plot of log MW versus the retention 
volume [Vretention (mL) = 549.3 ‒ 73.9 × log MW] (32).

2.3. Protein buffer optimization

Thermal shift analysis of protein stability in different 
buffers was performed using a Rotor-Gene Q Real-
time PCR instrument (QIAGEN, Hilden, Germany). 
FliL-C was concentrated to 1.0 mM in buffer E and 
then diluted 100 fold with a series of test buffers 
containing 10×SYPRO Orange reagent (purchased from 
Sigma-Aldrich, St. Louis, MO, USA as 5000× stock, 
catalogue number S5692) in a final volume of 25 μL. 
The samples were thermally denatured by heating them 
from 35°C to 90°C at a ramp rate of 0.5°C/min. Protein 
denaturation was monitored by following SYPRO 
Orange fluorescence emission (λex 530 nm/λem 555 nm). 
The denaturation data were fit to a derivation of the 
Boltzmann equation for the two-state unfolding model 
to obtain the midpoint of denaturation (the melting 
temperature Tm) (33). All experiments were performed 
in triplicates.

2.4. Crystallization

FliL-C was concentrated to 8 mg/ml and centrifuged 
for 20 min at 13,000 g to clarify the solution. The 
crystallization screening was carried out by the hanging-
drop vapour-diffusion method using an automated 
Phoenix crystallization robot (Art Robbins Instruments, 
Sunnyvale, CA, USA) and commercial screens JBS 
Classic HTS1, JBS Classic HTS2, JBS JCSG++ (Jena 
Bioscience, Jena, Germany), Crystal Screen HT, and 
PEG/Ion HT (Hampton Research, Laguna Niguel, CA). 
The crystallization droplets comprised 100 nL protein 
solution mixed with 100 nL reservoir solution, and were 
equilibrated against 50 μL reservoir solution in a 96-
well Art Robbins CrystalMation Intelli-Plate (Hampton 
Research). Clusters of needle-like crystals appeared 
after one day in condition G5 of the JBS Classic HTS2 
screen, which contained 0.5 M ammonium di-hydrogen 
phosphate and 0.2 M trisodium citrate, and in condition 

Table 1. Data collection and processing. Values in 
parentheses correspond to the highest resolution shell

Diffraction source
Wavelength (Å)
Temperature (K)
Detector
Rotation per image (º)
Total rotation range (º)
Space group
a, b, c (Å)
α, β, γ (º)
Mosaicity (º)
Resolution range (Å)
Total No. of reflections
No. of unique reflections 
Completeness (%)
Multiplicity
<I/σ(I)> 
CC1/2 (%)
Rmerge

Overall B factor from 
    Wilson plot (Å2)

MX1 beamline, Australian Synchrotron 
0.95
100
ADSC Quantum 210r CCD
0.5
180
P1
62.5, 82.6, 97.8  
67.7, 83.4, 72.8
0.6
54.16-2.80 (2.91-2.80)
81,483 (9,191)
41,760 (4,676)
98.1 (97.6)
2.0
5.2 (1.6)
98.5 (71.3)
0.103 (0.323)

30.7
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been set at residues 81-183. FliL-C was over-expressed 
in BL21(DE3)-RIPL cells from the pET151/D-TOPO 
plasmid, upon induction of T7 polymerase, and 
purified to > 98% electrophoretic homogeneity based 
on Coomassie Blue staining of the SDS-PAGE gel 
(Figure 2). It migrated on SDS-PAGE with an apparent 
molecular weight of ~12 kDa, which is close to the value 
calculated from the amino-acid sequence (12.18 kDa). 
 When subjected to gel filtration, the protein eluted 
as a single symmetrical peak (data not shown). The 
particle weight value estimated from the mobility of the 
gel-filtration column calibrated using globular proteins 
of a known mass gave the value of approximately 
11.2 kDa, which suggested that H. pylori FliL-C is 
monomeric in solution under the tested conditions. 
This result is in agreement with the previous report on 
the periplasmic domain of Vibrio alginolyticus FliL, 
which is also primarily monomeric in solution in the 
concentration range used in this study (27). 
 In preparation for crystallization experiments, 
we have assessed the protein stability in different 
buffers using a thermal shift assay (Figure 3), and 
ascertained that gel-filtration buffer E (10 mM Tris-HCl 
pH 8.0, 150 mM NaCl) was optimal, as the melting 
temperature in this buffer was one of the highest among 
all tested conditions. Thus, no buffer exchange step 
was needed between gel filtration and crystallization. 
Crystals of FliL-C were obtained using a sparse-matrix 
crystallization approach. A complete X-ray diffraction 
data set was collected for a cryo-cooled crystal of 
FliL-C (Figure 4) to 2.8 Å using the Australian 
Synchrotron facility. Autoindexing of the diffraction 
data using XDS was consistent with space group P1, 
with unit-cell parameters a = 62.5, b = 82.6, c = 97.8 Å, 
α = 67.7, ꞵ = 83.4, γ = 72.8°. The average I/σ(I) value 

was 5.2 for all reflections (resolution range 54.2-2.8 Å) 
and 1.6 in the highest resolution shell (2.91-2.80 Å). 
Data processing gave an Rmerge of 0.103 for intensities 
(0.323 in the highest resolution shell), and these data 
were 98% complete (98% completeness in the outer 
shell). 
 Estimation of the Matthews coefficient VM (36) 
gave plausible values for 8 (VM = 4.6 Å3/Da) to 18 (VM 
= 2.1 Å3/Da) protein molecules in the asymmetric unit. 
The χ = 90, χ = 120 and χ = 180° sections of the self-
rotation function were unremarkable. Thus, we are 
currently not able to establish the protein content of the 
asymmetric unit. A search for heavy-atom derivatives 
with the aim to solve the structure using multiple 
isomorphous replacement and/or multi-wavelength 
anomalous dispersion methods is underway. Production 
of the recombinant periplasmic domain of H. pylori 
FliL in its pure form will enable proteomics-based 
identification of its interacting partners in the flagellar 
motor. Furthermore, generation of well-ordered, 
reproducible crystals will allow determination of its 3-D 

Figure 2. Coomassie Blue-stained 16.5% SDS–PAGE gel 
of recombinant FliL-C.

Figure 3. Comparison of the melting temperature Tm of 
the 10 μM solution of FliL-C in different buffers. Results 
are means ± S.D. for three independent replicates.

Figure 4. The FliL-C crystal mounted in the cryo-
loop prior to data collection at the MX1 station of the 
Australian Synchrotron.
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structure which would be an important step towards our 
understanding of its function in the bacterial flagellum.
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