
www.biosciencetrends.com

BioScience Trends. 2018; 12(4):360-368. 360

Combined Biomarkers Composed of Environment and Genetic 
Factors in Stroke

Yingying Wang1, Jianfeng Liu2, Hongyan Wu1,*, Yunpeng Cai1,*

1 Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technologies, Chinese Academy of 
Sciences, Shenzhen, China;

2 Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.

1. Introduction

Stroke, as one of the leading causes of death and 
disability in the world, has attracted lots of research 
efforts on the analyses of its underlying mechanisms on 
'Omics levels continuously since the 20th century (1). 
Of which, the identification framework of biomarkers 
that measure stroke on different molecular levels has 
resulted in considerable enthusiasm for their wide 
usage in diagnosis and prognostication. A biomarker 

can be any measurement made on a biological system 
in theory, however, the stroke biomarkers typically 
refer to environment factors (EFs) and genetic factors 
(GFs). Many researches had been performed on EF(s) 
or GF(s) levels to explore the occurrence, development, 
and prognosis of stroke (2,3). For example, EFs 
such as ursolic acid (4) and GFs such as ALOX5 (5) 
were shown to be closely related to the happening of 
stroke. Biomarkers can be generally classified into 
target factors and indicator factors, according to their 
causal relationship with the investigated disease. A 
target factor was one that played an important role in 
causing stroke, which meant that the changing of this 
factor would not only reflect the patient's condition, 
but also be a possible treatment target. In comparison, 
an indicator factor was one that distinguished stroke 
patients from healthy people, without necessarily being 
the cause of the disease. Usually, indicator factors were 
advantageous in the ability to discriminate potential 
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patients and the ease of detection, but provided little 
useful information for disease treatment or prevention. 
On the contrary, target factors were favored for 
pathology or possible treatments, but may not be good 
for patient diagnosis or risk prediction. Ideally, a good 
biomarker set should contain the advantages of both 
types of factors and reflect the interaction(s) between 
them. 
 It was widely accepted during the past decades that 
the onset of stroke was the result of interactions between 
EFs and GFs (6). However, no combined biomarker 
covering both EFs and GFs on multiple omics levels 
were identified on stroke. The interplay(s) information 
between EFs and GFs under different conditions 
including several complex diseases were validated and 
stored in databases such as miREnvironment (7) and 
PEMDAM (8) with the development of bioinformatics 
which made the analyses on combined EF-GF 
biomarkers of stroke possible.
 In this study, we proposed a framework to identify 
the targeting or indicating role each factor played in 
the combined stroke biomarkers selected based on 
bioinformatics analyses. The information of stroke 
related factors on both genetic level (including genes 
and miRNAs) and environment level were downloaded 
from several public databases. A combined set of 36 
biomarkers were then chosen by an evaluation score for 
each candidate EF and an importance score calculated 
using the relationships between GFs. We further carried 
out validation experiments on three independent data 
sets with the selected biomarkers, which confirmed 
that the obtained markers were pervasively effective 
in discriminating stroke patients of different stages 
from healthy people. It was interesting to find out that 
the obtained biomarkers could further be grouped into 
4 categories related to the prevention, occurrence, 
processing, and recovery of stroke, respectively. The 
classification of target and indicator factors in each 
combined biomaker made the relationships between 
environment and genetic factors clearer, which may 
provide a new sight for stroke prevention, treatment, 
and recovery.

2. Materials and Methods

2.1. Materials

Several raw data sets were built based on the data 
extracted from public databases as follows:
 (a)  Stroke-related diseases/symptoms: The 
following key words were used to perform the EF 
and GF searches according to the information from 
Comparative Toxicogenomics Database (CTD) (9): 
'Stroke', 'Infarction, Middle Cerebral Artery', 'Cerebral 
Infarction', 'Brain Infarction', 'Lateral Medullary 
Syndrome', 'Brain Stem Infarctions', 'Infarction, 
Anterior Cerebral Artery', 'Infarction, Posterior Cerebral 

Artery', and 'Dementia, Multi-Infarct'.
 (b) Stroke-related raw EFs: 4,833 stroke EFs 
extracted from CTD using stroke-related diseases/
symptoms (as listed in (a)) as key words.
 (c) Stroke-related raw genes: 287,171 interactions 
were found between the 4,833 stroke-related raw EFs 
and 23,472 genes. These genes were marked as 'stroke-
related raw genes' in the following analyses.
 (d) Stroke-related raw miRNAs (SRMI): 168 
miRNAs were extracted from HMDD (10), PhenomiR 
(11), and PEMDAM using stroke-related diseases/
symptoms (as listed in (a)) as key words. Each miRNA 
was assigned a score calculated using the following 
equation: 

                       Wm = Sh + Sph + Spe ,

Of which, if one miRNA was found to be related to 
stroke in HMDD or PEMDAM, the value of Sh or Spe in 
Equation 1 was 1.0, otherwise, the value was assigned 
0. Similarly, if one miRNA was found to be related to 
stroke in PhenomiR, Sph was calculated as the product 
of the number of supportive literature and the number 
of validated types (the maximum number was 2.0, 
including over-regulation and down-regulation).

2.2. Candidate EFs Selections based on GFs

The relationships between EFs and miRNAs were 
downloaded from PEMDAM and MiREnvironment. The 
EFs in the 'stroke-related raw EFs' were left if at least one 
interaction was found. For these EFs, a score  Ep, based 
on the interactions between GFs (including miRNAs and 
genes) was calculated using the following: 

 Of which, if the interaction was validated in 
miRTarBase (12), Ep was assigned the maximum of 
px• px represented the times the interaction predicted by 
10 different miRNA target computational prediction 
algorithms (13). 
 The EFs with at least one Ep score over 0 were 
selected as candidate EFs (C-EF).

2.3. Evaluation Score for EF

For any C-EF i, an evaluation score was calculated as 
follows:

                    EE(i) = ER(i) * ES(i) ,

 A higher score indicated a closer relationship 
between the EF and stroke. Of which, the relation score 
ER (EF relation score) was calculated as follows:
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GFs and stroke (no such public data set for EFs were 
available currently) as listed in Table 1. All the samples 
of the three data sets were human blood. The Wilcoxon 
rank sum test was performed for each GF identified 
as a factor in any combined biomarker in this study. 
A GF with p-value not above the threshold we set was 
considered to be differentially expressed between the 
stroke patients and controls.

3. Results

3.1. Combined biomarkers for Stroke

There were 229 EFs in 'stroke-related raw EFs' selected 
as 'filtered stroke-related EFs' after the filter step 
based on stroke-related miRNAs. 36 EFs were finally 
defined as 'candidate EFs (C-EFs)'. One C-EF was thus 
considered as one factor of the combined biomarkers 
if it interacted with each C-EF with the maximum 
PageRank score (See Table 2 for details). The features 
of combined biomarkers were characterized from three 
aspects based on literature search results: (a) effect: the 
positive, negative, or dual effects on the processes of 
stroke; (b) structure: the role (indicator or target) EF/GF 
played in stroke; (c) mechanism: the interaction types 
(induce or inhibit) between the EF and GF(s) in the 
combined biomarkers. All the features were evaluated 
based on the target factor in each combined biomarker.

3.2. Validation Results

The expression changes of all the GFs in the combined 
biomarkers were checked. Any GF with at least one 
p-value not above 0.1 was considered as differentially 
expressed GFs (see details in Table 3). 8 and 3 genetic 
factors were identified as biomarkers in the acute and 
recovery phases of stroke, respectively. For example, 
the expression change of SERPINH1 only appeared 
in the acute phase of stroke showing its targeting 
role in the combined biomarker. Compared with this, 
11 genetic factors such as MMP9 were found to be 
differentially expressed in both acute and recovery 
phases of stroke showing their indicated roles in stroke. 

3.3. Hiberarchy model of Combined bio-markers

The 36 combined biomarkers could thus be divided 
into 8 different groups according to the three aspects 
mentioned above. The biomarkers in each group were 
divided into sub-groups according to their features. 
The mean EE scores were calculated for each sub-
group as shown in Figure 1. The EE mean values 
of sub-groups and the statistical significance were 
calculated using student t-test. Results showed that 
the differences between 'induce' and 'inhibit' sub-
groups on the 'mechanism' level was significant with 
a p-value of 0.09605 indicating to us that 'mechanism' 

                                                                        ,

 Eg was the score based on gene level, which 
was calculated using the interactions between EFs 
and genes. Of which, ni represented the number of 
interactions, ns represented the number of species, 
and nl represented the number of supportive literature. 
Em was the score based on miRNA level, which was 
calculated using the interactions between EFs and pre-
miRNAs: tn was the times each interaction between EF 
and miRNAs appears in the database of PEMDAM and 
MiREnvironment. wm was calculated using the equation 
described above.

 For each C-EF i, a disease specificity score ES 
(EF specificity score) based on the biological network 
analyses was calculated as follows:

 Of which, di represents the degrees of EF i in the 
EF-disease network built based on the relationships 
between EFs and diseases from PEMDAM and 
miREnvironment. If the candidate EF was not included 
in the C-EF data set, the maximum value 1.0 was 
assigned for it. A higher ES score indicated a higher 
specificity of the EF. 

2.4. Important Score for GFs

For each EF in C-EF, a network was built using its related 
miRNAs and genes based on the targeting information 
(including validated and predicted interactions between 
miRNAs and genes) between them. 
 The R package 'igraph' was used to perform the 
Google PageRank analyses on the miRNA-mRNA 
network. The PageRank score for each node in the 
network was used to measure the importance based on 
counting the number and quality of links to a node. The 
miRNAs and mRNAs were ranked after each of them 
was assigned a calculated score . 

2.5. Validation based on Independent Data Sets

To validate availability of the combined biomarkers, 
three independent microarray data sets from NCBI 
GEO were chosen to check the relationships between 
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could be used as the first analysis level. There were 16 
biomarkers in the induce group and 12 in the inhibit 
group (8 combined biomarkers were not included in 
the following analyses since their mechanism were not 
clear). 
 To explore the second analysis level, we divided 
the biomarkers in one sub-group into sub-sub-group 
according to their 'effect' and 'structure' features. EE 
values and PageRank scores were used to test the 
differences between these sub-sub-groups. For the sub-
groups containing combined biomarkers with induce 
mechanism, significant difference was found between 

two sub-sub-groups (positive and negative) according 
to the 'effect' feature with a p-value of 0.06137 using 
PageRank score. Compared with this, no significant 
difference was found in the 'inhibit' sub-group with 
p-value of 0.2826 (mean PageRank scores were 
0.2588571 and 0.3178 for 'positive' and 'negative', 
respectively). 
 Similarly to the above analyses, we checked all 
the possible third analyses levels using statistical 
test. For the 8 combined biomarkers in 'Mechanism 
(induce)-Effect (positive)', only 1 biomarker was 
shown to have the structure of 'GF-EF'. The p-value of 

Table 1. List of validated data sets used in this study

GF type

Gene 
Gene/miRNA
miRNA

Stroke Condition

Acute Phase
Recovery Phase
Acute Phase

NCBI GEO ID

GSE16561
GSE22255
GSE55937

Number of Stroke Patients (Case)

39
20
24

Number of Healthy People (Controls)

24
20
24

Table 2. List of combined biomarkers

Rank

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35

36

C-EF

Dexamethasone
Acetaminophen
Vitamin E
Cisplatin
Cocaine
Cadmium
Bortezomib
Gemcitabine
Nicotine
Metformin
Ethanol
Nitric Oxide
DDT
Docetaxel

Hemin
Letrozole
Curcumin
Bromocriptine
Arsenic
Sulindac sulfide
Imatinib Mesylate
Ursolic acid
Vitamin D (VitD)
Bleomycin
Oxaliplatin
Glucose
Gefitinib
Topotecan
Lead

Paroxetine
Genistein
Decitabine
Cytarabine
Fludarabine
Polycyclic Aromatic 
Hydrocarbons (PAH)
Sorafenib

GF(s)

hsa-mir-30e
hsa-mir-122
hsa-mir-15b
hsa-mir-642
hsa-let-7d
hsa-mir-146a
hsa-mir-122
hsa-mir-149
hsa-mir-21
hsa-mir-21
hsa-mir-21
hsa-mir-155
NOS2, STAT3
hsa-mir-100, hsa-mir-101-1, hsa-mir-126, hsa-mir-
130a, hsa-mir-16-1/2, hsa-mir-194-1, hsa-mir-195, 
hsa-mir-212, hsa-mir-30a, hsa-mir-34a, hsa-mir-7-1
hsa-mir-126, hsa-mir-130a, hsa-mir-18b
hsa-let-7f-1/2
ALOX5
hsa-mir-550-1
hsa-mir-222
ATF3, PTGS2(COX2), hsa-mir-17, hsa-mir-21
hsa-mir-451
hsa-mir-21
hsa-mir-22
hsa-mir-21
hsa-mir-21
hsa-mir-133a-1/2, hsa-mir-146a/b, hsa-mir-451
hsa-mir-222, hsa-mir-30b
hsa-mir-142, hsa-mir-34b
ADORA1, IGF1, IL1B, hsa-mir-146a, hsa-mir-21, 
hsa-mir-222
hsa-mir-30a
hsa-mir-151, hsa-mir-27a
hsa-mir-145
EDN1, F2, hsa-mir-29a, hsa-mir-30c-1
MMP9
CCL2

hsa-mir-122, SERPINH1

Effect

Positive, Negative
Positive
Positive
Negative
Negative
Negative
Positive
Negative
Positive
Positive
Positive
Positive
Negative
Positive

Positive
Negative
Positive
Negative
Negative
Positive
Positive
Positive
Positive
Negative
Negative
Negative
Negative
Positive
Negative

Positive
Positive
Positive
Negative
Positive
Negative

Negative

      Structure
(target-indicator)

EF-GF
EF-GF
Unknown
GF-EF
GF-EF
EF-GF
EF-GF
Unknown
EF-GF
GF-EF
EF-GF
GF-EF
EF-GF
GF-EF

Unknown
EF-GF
EF-GF
EF-GF
EF-GF
EF-GF
GF-EF
EF-GF
EF-GF
GF-EF
GF-EF
EF-GF, GF-EF
EF-GF
Unknown
Unknown

GF-EF
EF-GF
EF-GF
GF-EF
EF-GF
Unknown

GF-EF

Mechanism

Induce
Induce
Unknown
Induce
Induce
Inhibit
Induce
Unknown
Induce
Inhibit
Induce
Induce
Inhibit, Induce
Inhibit

Inhibit, Induce
Induce
Inhibit
Induce
Induce
Inhibit, Induce
Inhibit
Inhibit
Induce
Induce
Inhibit
Unknown
Inhibit
Unknown
Inhibit

Inhibit
Inhibit
Induce
Inhibit
Induce
Unknown

Induce
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binomial distribution analysis was 0.01563 indicating 
a significant difference. Analysis of the 8 combined 
biomarkers in 'Mechanism (induce)-Effect (negative)' 
showed no significant difference on structure level. 
Taken together, the analyses hierarchy model of the 
three features were then fixed as 'Mechanism-Effect'.
 It was interesting to find that the significant 
differences were found on induce and positive level, 
which may indicated these combined biomarkers might 
play their roles in a forward way rather than feedback.

3.5. Function of Combined biomarkers

3.5.1. Combined biomarkers for Stroke Prevention and 
Damages Mitigation

Seven combined biomarkers in the 'Mechanism (inhibit)-
Effect (positive)' model were shown to play a role in 
protecting against stroke or mitigating stroke-induced 
damages. All the EFs including curcumin, ursolic acid, 
genistein, metformin, docetaxel, imatinib mesylate, and 

Table 3. p-value of GFs in combined biomarkers

GF Name

ADORA1
ALOX5
ATF3
CCL21
EDN1
IGF1
IL1B
MMP9
NOS2
PTGS2
SERPINH1
STAT3
F2
hsa-mir-145
hsa-mir-122
hsa-mir-550
hsa-mir-642
hsa-mir-30e
hsa-mir-21
hsa-mir-16-2
hsa-mir-22
hsa-mir-142

P-value in Acute Phase (GSE16561, GSE55937)

3.64E-10
0.007267241
1.43E-15
2.86E-15
5.83E-06
7.16E-16
6.92E-11
6.08E-10
7.16E-16
7.97E-08
0.000431237
0.001638866
--
0.000921373
0.014428574
0.019369559
0.066476228
0.071189216
0.077797772
0.092850883
0.675265662
0.645619886

P-value in Recovery Phase (GSE22255)

2.76E-10
0.000472032
3.36E-05
0.006144956
1.69E-07
5.41E-09
0.040175085
1.34E-07
1.45E-11
0.383413282
0.120699706
0.00513072
0.09132
--
--
--
--
--
0.06035
--
0.04298
0.0675

 -- Some of the GFs were not detected in all the three data sets due to the original platform, as a result, no p-value could be calculated.

Figure 1. Comparison of mean EE scores on different levels. The mean EE scores were calculated for each sub-group.
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paroxetine functioned as stroke prevention or damage 
mitigation factors (See Table S1 of Supplemental Data 
for details, http://www.biosciencetrends.com/action/
getSupplementalData.php?ID=27). 
 Hsa-mir-21, hsa-mir-27a, hsa-mir-151, hsa-mir-100, 
hsa-mir-101-1,hsa-mir-130a, hsa-mir-16-1/2, hsa-
mir-194-1, hsa-mir-195, hsa-mir-212, hsa-mir-30a, 
hsa-mir-451, and hsa-mir-34a were shown to be over-
regulated; while hsa-mir-126 and hsa-mir-7-1 were 
shown to be down-regulated in young stroke patients 
(14,15).
 The relationships between EF and GF in each 
biomarker was inhibit, which meant that the expression 
or activation of indicator factor was inhibited by the 
target factor. For example, curcumin was shown to 
perform the damage mitigation role by inhibiting the 
catalytic activities of ALOX5 (16), which may attenuate 
neuro-protection following focal cerebral ischemia (5). 
hsa-mir-21 was shown to be suppressed by ursolic acid 
in human glioblastoma cell lines U251 (17). Genistein 
was shown to play its roles through inhibition of mir-27a 
and mir-151 in different diseases (18,19). Metformin 
was shown to improve skeletal muscle insulin resistance 
by inhibiting mir-21 expression (20). Over-regulation 
of mir-100 could prevent docetaxel chemoresistance 
in patients with lung adenocarcinoma (21). Docetaxel 
resistance was associated with increased expression of 
mir-34a, and decreased expression of mir-100, mir-7, 
mir-16, mir-30a, and mir-126 in human breast cancer 
cells (22). mir-195 was a negative regulator in the 
resistance of DU145/DOC cells to docetaxel (23). hsa-
mir-451 was observed to be down-regulated in imatinib-
resistant chronic myeloid leukemia patients (24). mir-
30a may limit the effects of paroxetine by targeting 
BDNF (25).

3.5.2. Combined biomarkers for Causing Stroke

There were 8 combined biomarkers proved to be related 
to the occurrence of stroke. It was interesting to find 
out that all these biomarkers were in the model of 
'Mechanism (induce)-Effect (negative)', of which 4 target 
factors were EFs while the other 4 target factors were 
GFs. 
 At least one of the EF or GF in each biomarker 
were proved to be a risk factor causing stroke 
including dexamethasone, letrozole, bromocriptine, 
arsenic, cisplatin, cocaine, bleomycin, sorafenib, and 
SERPINH1 (26) (See Table S1 of Supplemental Data 
for details, http://www.biosciencetrends.com/action/
getSupplementalData.php?ID=27). 
 Of all the GFs, previous studies showed that hsa-mir-
30e, hsa-mir-550-1, hsa-mir-222, hsa-mir-642, hsa-mir-
let-7d, hsa-mir-21, hsa-mir-122 were up-regulated while 
hsa-mir-7f-1, hsa-mir-7f-2, and hsa-mir-15b were down-
regulated in young stroke patients (14,27,28). 
 The increased expression of indicator factors may 

be induced by the target factor in the same combined 
biomarker. One study showed that dexamethasone-
induced IEC-6 cells differentiation caused a 2.5-fold 
increase in mir-30e expression, and upon beta-catenin 
siRNA transfection, mir-30e increased 1.3-fold (29). 
After letrozole treatment for 48 hours, all let-7 sub-
types showed a trend toward increased expression (29). 
mir-550 was confirmed to be significantly up-regulated 
between the group of bromocriptine-treated and 
untreated prolactinomas (30). mir-222 was up-regulated 
in arsenic-transformed human lung epithelial BEAS-
2B cells indicating its role in arsenic-induced tumor 
growth (31). The increased expression of mir-642 could 
increase the sensitivity of cisplatin in cell lines and 
advanced bladder cancer (28). Cocaine up-regulated 
let-7d in zebrafish embryos (32). The repressing of 
mir-21 could attenuate bleomycin-induced pulmonary 
fibrosis (33). mir-122 was shown to be up-regulated 
during apoptosis induced by bortezomib and sensitized 
hepatocellular carcinoma cells to sorafenib (27,34).

3.5.3. Combined biomarkers for Stroke Processes

Four combined biomarkers in the model of 'Mechanism 
(inhibit)-Effect (negative)' showed adverse effects on 
stroke. Gefitinib, cadmium, oxaliplatin, cytarabine, 
hsa-mir-146a (35), and EDN1 (36) were proved to be 
negative factors of stroke (See Table S1 of Supplemental 
Data for details, http://www.biosciencetrends.com/action/
getSupplementalData.php?ID=27).
 hsa-mir-222, hsa-mir-21, hsa-mir-29a and hsa-mir-
30c-1 were shown to be up-regulated in young stroke 
patients (14), while hsa-mir-30b, and hsa-mir-146a 
were shown to be down-regulated in young stroke 
patients (14,35).
 mir-30b and mir-222 were shown to be down-
regulated by gefitinib (37). The expression of mir-146a 
was negatively correlated with exposure to cadmium 
(38). The over-expression of mir-21 could protect 
CRC cells from oxaliplatin-induced apoptosis and 
increase the proliferative capacity (39). The deregulated 
expression of mir-29a and mir-30c was shown to 
contribute to the sensitivity to cytarabine (40).

3.5.4. Combined biomarkers for Stroke Recovery 

There were 8 combined biomarkers in the 'Mechanism 
(induce)-Effect (positive)' model. All the GFs including 
hsa-mir-122, hsa-mir-21, hsa-mir-22, hsa-mir-145, hsa-
mir-155, and MMP9 in the 7 biomarkers (hsa-mir-122 
and hsa-mir-21 were involved in two bio-markers) were 
proved to have increased expression in stroke patients 
(14,15,41). 
 Four EFs including bortezomib, nicotine, vitamin 
D (VitD), and fludarabine were proved to contribute to 
neuroprotection after stroke. The other 4 EFs including 
acetaminophen, ethanol, decitabine, and nitric oxide 
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were proved to be associated with better outcome for 
stroke. For example, acetaminophen was indicated 
to improve outcome in patients with stroke and fever 
without dramatically lowering body temperature in 
one clinical trial study. Low to moderate levels of 
ethanol could not only decrease the risk of stroke, but 
also reduce post-ischemic sequelae. Decitabine was 
widely used in sickle cell anemia which was closely 
related to stroke. Treatment with nitric oxide was 
shown to improve functional recovery after stroke (See 
Supplemental Data for details). 
 Most of the GFs were considered to be induced by 
EFs in this model based on their relationships in other 
conditions since their relationships were still lacking 
in stroke-related fields. Mir-122 was reported as a 
novel biomarker of acetaminophen toxicity and was 
shown to be up-regulated during apoptosis induced 
by bortezomib (27,42,43). Besides, the up-regulation 
of mir-21 induced by nicotine could promote EMT 
transforming growth factor beta (TGF-β) dependently 
in human esophageal cancer (44). Chronic ethanol 
feeding was shown to enhance mir-21 induction during 
liver regeneration while inhibiting proliferation in rats 
(45). Mir-22 was induced by VitD and contributed to 
its antiproliferative, antimigratory and gene regulatory 
effects in colon cancer cells (46). Decitabine was shown 
to induce the expression of mir-145 (47). MMP9 was 
shown to be involved in chronic lymphocytic leukemia 
cell response to fludarabine (48). Knockdown of mir-
155 could significantly decrease the production of nitric 
oxide (49), which was the indicated factor.

4. Discussion

The identification of complex diseases' biomarkers 
were considered to be one of the traditional topics 
in cardiovascular related fields. For example, the 
identification and evaluation of genetic biomarkers 
such as IL-6, TNF-α which were measured using blood 
as samples for heart failure had been performed which 
were considered to be of great importance since these 
results had improved the diagnosis and treatments 
greatly in the clinic. Compared with this, similar work 
performed on stroke had always been questioned 
since most of the samples were human blood, which 
may not reflect the changes of the ischemic regions 
due to the existence of the blood brain barrier (BBB). 
Considering this, the stroke related EFs attracted more 
and more attention since their roles could be both 
risk factors and/or biomarkers. These EFs could be 
divided into two different groups according to the their 
features as follows: (a) risk factor (clinical environment 
factor): cardiovascular risk factors widely accepted 
in clinic such as hypertension, diabetes mellitus, 
smoking, alcohol consumption, and air pollution, 
etc. (b) biomarker (toxicology environment factor): 
chemicals, drugs, and small molecules, etc. However, it 

was widely accepted that the occurrence of stroke was 
caused by both genetic and environment reasons. In 
recent years, research began to exploit the interplay(s) 
between EF(s) and GF(s). For example, one study 
showed that the combined effects of the MTHFR 3'-UTR 
polymorphisms and tHcy/folate levels might contribute 
to stroke prevalence (50). However, the relationship 
analyses on a systematic scale for stroke combined 
biomarkers were still lacking especially on multiple 
omics levels. 
 It was widely believed that genetic factors may 
coordinately support the influence of macro or micro 
environment factors. Exploring this type of genetic 
biomarkers would be beneficial in understanding the 
mechanism of disease onset and aiding the development 
of therapy or prevention schemes. Many mRNAs were 
identified as biomarkers of stroke in former studies 
using different frameworks such as differential analyses, 
network analyses, etc. Besides mRNAs, miRNAs were 
widely considered as genetic factors since they could 
play important roles in stroke through regulating their 
target genes. One miRNA might regulate hundreds to 
thousands of mRNAs, which made the parallel analyses 
performed using both mRNAs and miRNAs data sets 
possible. Based on these concerns, many researchers 
including us had constructed the combined biomarkers 
of stroke containing both miRNAs and mRNAs on the 
genetic level in previous studies. However, the close 
relationships between miRNAs and EFs had not been 
fully integrated in such studies. 
 In this study we demonstrated that by exploiting 
the environment-genetic interactions we do achieve a 
set of biomarkers that were robust across different data 
sets and with clear biological relevance. This suggested 
that knowledge about environment risk factors and 
environment-genetics would serve as a good guideline 
for exploring new combined biomarkers and the 
framework proposed in this study can be a useful tool 
for this purpose.
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