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1. Introduction

Apolipoproteins are amphipathic proteins that have 
pivotal functions as receptor ligands, enzyme co-factors, 
and lipid transport carriers in lipoprotein particles 
(1). Apolipoproteins are classified into 8 classes and 
several sub-classes, including apolipoprotein A (ApoAs 
including ApoA-I, ApoA-II, ApoA-IV, and ApoA-V), 

apolipoprotein B (ApoB including ApoB-48 and ApoB-
100), apolipoprotein C (ApoCs including ApoC-I, 
ApoC-II, ApoC-III, and ApoC-IV), apolipoprotein D 
(ApoD), apolipoprotein E (ApoE), apolipoprotein F 
(ApoF), apolipoprotein H (ApoH), and apolipoprotein 
M (ApoM) in mice. Moreover, apolipoproteins can also 
be divided into two major types, non-exchangeable and 
exchangeable, based on their biological and structural 
features. ApoB is non-exchangeable and is anchored 
in the lipoprotein particle, which primarily has a beta-
sheet structure and binds irreversibly to lipid droplets 
(2). The other apolipoproteins except for ApoF are 
exchangeable; these apolipoproteins consist of alpha-
helices and reversibly bind to lipid droplets (3,4). ApoF 
is a high-density lipoprotein (HDL)-associated protein 
that bears no structural or sequence similarity to the 
other classical apolipoproteins (5). For example, ApoF 
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does not exhibit the strong predicted amphipathic alpha 
helices essential for the lipid binding properties of 
other HDL-associated apolipoproteins, such as ApoA-I, 
ApoA-II, ApoE, and the ApoCs (3,6).
 Osteoblasts, or bone-forming cells, arise from 
multipotential mesenchymal stem cells (MSC) capable 
of giving rise to a number of cell lineages, such as 
adipocytes, myoblasts, and chondrocytes (7). When 
maintained under suitable culture conditions, they 
form bone-like nodules that represent the end product 
of the proliferation and differentiation of relatively 
rare osteoprogenitor cells present in the starting 
cell population. This process of differentiation has 
been subdivided into three developmental stages: 
proliferation, extracellular matrix synthesis and 
maturation, and mineralization, each of which as 
characteristic changes in gene expression (8). Many 
independent studies of patterns of gene expression 
during osteoblast differentiation have been reported (9-
11), and those studies found that some apolipoproteins 
were induced during this process (9).
 Estrogens have a considerable influence over the size 
and shape of the skeleton during growth and contribute 
to skeletal homeostasis during adulthood. The decline 
in estrogen levels associated with menopause causes 
bone loss in women. Estrogen deficiency increases 
differentiation in bone marrow adipose tissue (12) 
and attenuates the proliferation and differentiation of 
osteoprogenitors (13). Sex steroid hormones act on 
their target cells by binding to members of the nuclear 
hormone receptor superfamily: estrogens bind to 
estrogen receptor (ER) α or ERβ. Binding of estrogens 
to the receptors in the nucleus stimulates transcription 
of target genes resulting from direct interactions of the 
receptor proteins with DNA or from interactions with 
other transcription factors (14). However, no studies 
thus far have described the expression of apolipoprotein 
mRNA induced by estrogen during osteoblast 
differentiation in vitro. Thus, the aim of the current 
study was to observe the regulation of apolipoprotein 
mRNA expression by 17-β-estradiol (E2) during this 
process.

2. Materials and Methods

2.1. Chemicals and reagents

Serum-free and phenol red-free minimal essential 
medium (α-MEM) was obtained from Gibco-BRL 
(Gaithersburg, MD, USA). Penicillin-streptomycin was 
purchased from the Beyotime Institute of Biotechnology 
(Shanghai, China). Collagenase, E2, ascorbic acid, 
β-glycerophosphate disodium salt hydrate, and 
dexamethasone were purchased from Sigma-Aldrich 
Co (Saint Louis, MO, USA). Dispase was obtained 
from Hoffmann-La Roche, Ltd. (Basel, Schweiz). The 
RNAiso Plus, PrimeScript RT reagent kit, and SYBR 

Premix Ex TaqII reagent kit were purchased from 
TaKaRa Biotechnology (Otsu, Japan).

2.2. Mice

The animals used were 8-week-old C57Bl/6 mice with 
a body mass between 20 and 30 g that were purchased 
from the Laboratory Animal Facility of the Chinese 
Academy of Sciences (Shanghai, China). The laboratory 
animals were housed and handled in accordance with 
the guidelines of the Chinese Council for Animal Care. 
The mice were habituated to the housing conditions 
for 3 days. Afterwards, they were housed four (two 
male and two female) per cage on a reversed 12-hour 
light and 12-hour darkness cycle. Food and water were 
available ad libitum at room temperature. Newborn 
mice were used to isolate primary osteoblasts.

2.3. Primary osteoblast isolation and osteoblast 
differentiation in vitro

Osteoblasts were collected from the calvarium of 
newborn mice after 2 d as follows (15). Skull bones 
were extracted and digested (five times, 10 min each 
time) in α-MEM containing 0.1% collagenase and 0.2% 
dispase. The supernatant from the first 10-min digestion 
was discarded. Cells obtained from the remainder of the 
digestions were pooled, and 5 × 105 cells were seeded 
onto serum-free and phenol red-free α-MEM containing 
10 units/mL penicillin and 10 µg/mL streptomycin in 
6-well culture plates until they reached 80% confluence.
Osteogenic differentiation medium consisted of serum-
free and phenol red-free α-MEM, 20 mM ascorbic acid, 
1 M β-glycerophosphate disodium salt hydrate, and 1 
mM dexamethasone (16). For osteoblast differentiation 
in vitro, 80% confluent cells were cultured in osteogenic 
differentiation medium containing serial concentrations 
of E2 (10-10, 10-9, 10-8, 10-7, and 10-6 M) (17) or treated 
with saline for 0, 5, and 25 d (18).

2.4. RNA isolation and quantitative real-time reverse 
transcription PCR

After stimulation, cells were pooled, and total RNA 
was isolated and purified using the RNAiso Plus 
according to the protocol provided. For the reverse 
transcription reaction 500 ng of RNA together with 2.5 
pmol oligo dT primer, 50 pmol random hexamers, 0.5 
µL PrimeScript RT enzyme mix, and 2 µL 5× Prime 
Script buffer was performed according to the protocol 
from the PrimeScript RT reagent kit. Afterwards, 
mRNA expression was determined via quantitative 
real-time PCR using a SYBR Premix Ex Taq reagent 
kit on an Applied Biosystems 7900HT Fast Real-
time PCR system in a final volume of 20 μL per the 
manufacturer's instructions. Levels of mRNA expression 
were normalized to those of the housekeeping gene 
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0, 5, and 25 of differentiation (Figures 1A, 1D, and 
1G). There was no significant change in expression 
of ApoA-V in osteoblasts treated with saline and 
osteoblasts treated with 10-10 M E2 on days 0 and 5 
of differentiation (Figure 1J). However, expression 
of ApoA-V mRNA on day 25 of differentiation 
increased compared to that on day 0 of differentiation 
in osteoblasts treated with saline and osteoblasts treated 
with 10-10 M E2 (Figure 1J). When the concentration of 
E2 increased, expression of ApoA-I, ApoA-II, ApoA-
IV, and ApoA-V on days 5 and 25 of differentiation 
increased compared to that on day 0 of differentiation 
(Figures 1A, 1D, 1G, and 1J). On days 5 and 25 of 
differentiation, the expression of ApoA-I, ApoA-II, 
ApoA-IV, and ApoA-V mRNA was up-regulated by E2 
in a dose-dependent manner (Figures 1B, 1C, 1E, 1F, 
1H, 1I, 1K, and 1L).

3.1.2. ApoB was up-regulated by E2 in a dose-dependent 
manner during osteoblast differentiation

The expression of  ApoB was down-regulated 
significantly on days 5 and 25 of differentiation when 
compared with day 0 of differentiation in osteoblasts 
treated with  saline and osteoblasts treated with 10-10 
M E2 (Figure 2A). There was no significant change in 
expression of ApoB in osteoblasts treated with 10-9 M 
E2 on days 0, 5, and 25 of differentiation (Figure 2A). 
When the concentration of E2 increased, the expression 
of ApoB on days 5 and 25 of differentiation increased 
compared to that on day 0 of differentiation (Figure 
2A). On days 5 and 25 of differentiation, the expression 
of ApoB mRNA was up-regulated by E2 in a dose-
dependent manner (Figures 2B and 2C).

3.1.3. ApoCs were up-regulated by E2 in a dose-
dependent manner during osteoblast differentiation

Expression of ApoC-I mRNA on day 5 of differentiation 
increased compared to that on day 0 of differentiation 
in osteoblasts treated with saline and osteoblasts 
treated with 10-10 M E2 (Figure 3A). However, there 
was no significant change in expression of ApoC-I 
on days 0 and 25 of differentiation (Figure 3A), in 
expression of ApoC-II and ApoC-III on days 0 and 5 of 
differentiation (Figures 3D and 3G), or in expression 
of ApoC-IV on days 0, 5, and 25 of differentiation 
(Figure 3J) in osteoblasts treated with saline and 
osteoblasts treated with 10-10 M E2. Expression of 
ApoC-II was down-regulated significantly on day 
25 of differentiation when compared with day 0 of 
differentiation in osteoblasts treated with saline and 
osteoblasts treated with 10-10 M E2 (Figure 3D). 
Expression of ApoC-III was up-regulated significantly 
on day 25 of differentiation when compared with day 
0 of differentiation in osteoblasts treated with saline 
and osteoblasts treated with 10-10 M E2 (Figure 3G). 

β-actin. All real-time PCR experiments were performed 
in triplicate. The corresponding primers used are listed 
as Table 1.

2.5. Statistical analysis

All values are presented as the mean ± SD. Statistically 
significant differences were assessed with one-way 
ANOVA followed by Tukey's test. A p value of less 
than 0.05 was considered to be statistically significant.

3. Results

3.1. Regulation of apolipoprotein genes by E2 during 
osteoblast differentiation

3.1.1. ApoAs were up-regulated by E2 in a dose-
dependent manner during osteoblast differentiation

In osteoblasts treated with saline and osteoblasts 
treated with 10-10 M E2, expression of ApoA-I and 
ApoA-II was down-regulated significantly on days 
5 and 25 of differentiation compared to that on day 
0 of differentiation (Figures 1A and 1D). There was 
no significant change in the expression of ApoA-I in 
osteoblasts treated with 10-9 M E2, in the expression 
of ApoA-II in osteoblasts treated with 10-8 M E2, or in 
the expression of ApoA-IV in osteoblasts treated with 
saline and osteoblasts treated with 10-10 M E2 on days 

Table 1. Sequences of the primers for apolipoproteins and 
β-actin
ApoA-I

ApoA-II

ApoA-IV

ApoA-V

ApoB

ApoC-I

ApoC-II

ApoC-III

ApoC-IV

ApoD

ApoE

ApoF

ApoH

ApoM

β-actin

5'-GTGGCTCTGGTCTTCCTGAC-3'
5'-AGTCTCTGCCGCTGTCTTTG-3'
5'-CTTGTCAGGTCAGCAGGAACT-3'
5'-AGGCAGAAGGTAGGGAGAGG-3'
5'-CATCACAGCAGCAGACACCT-3'
5'-CTTCACCTCCCACAGGACAT-3'
5'-GAACGCTTGGTGACTGGAAT-3'
5'-CGTGTGAGTTTGTGGGACAG-3'
5'-CCTCCACCAAACTGCTCTTC-3'
5'-TTCCCGTGTTCCAATCAAAT-3'
5'-TCGCTCTTCCTGTCCTGATT-3'
5'-CCAAAGTGTTCCCAAACTCC-3'
5'-AGTCCCTTCCTGCCACTACA-3'
5'-CGAGTCATCTTCCTGGTTCC-3'
5'-GGAGAGGAAGGAAGGGAAGA-3'
5'-ATGCCAGGAGAGCCAAGAG-3'
5'-GCCATCAGTCTCCCTTTCTG-3'
5'-CATCTGTCCCTGGTTCTGGT-3'
5'-ACAGCATCCCATCTTTGTGC-3'
5'-GTGTGTGGCTTCTCCCAAGT-3'
5'-ACCGCTTCTGGGATTACCT-3'
5'-TTCCGTCATAGTGTCCTCCA-3'
5'-AAACAGGAGCAGGATTGTGG-3'
5'-CAGGATGAGTCGGAGGCTAT-3'
5'-GCCACCACCAGTTCCAAAG-3'
5'-ATCGGGTCCAGTTTCCTTGT-3'
5'-TCTCTGACCTCTTGCTTGGA-3'
5'-GCTGGGCTCCTATCTTGTCT-3'
5'-CCTCTATGCCAACACAGT-3'
5'-AGCCACCAATCCACACAG-3'

Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
Forward Primer
Reverse Primer
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When the concentration of E2 increased, expression of 
ApoC-I, ApoC-II, ApoC-III, and ApoC-IV on days 5 
and 25 of differentiation increased compared to that on 
day 0 of differentiation (Figures 3A, 3D, 3G, and 3J). 
On both days 5 and 25 of differentiation, the expression 
of ApoC-I, ApoC-II, ApoC-III, and ApoC-IV mRNA 
was up-regulated by E2 in a dose-dependent manner 

(Figures 3B, 3C, 3E, 3F, 3H, 3I, 3K, and 3L).

3.1.4. ApoD was up-regulated by E2 in a dose-dependent 
manner during osteoblast differentiation

There was no significant change in expression of ApoD 
in osteoblasts treated with saline or osteoblasts treated 

Figure 1. E2 up-regulated ApoAs in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 M) 
or saline for 0 d, 5 d, and 25 d. A, D, G, and J are the levels of ApoA mRNA relative to the level when osteoblasts were treated 
with saline for 0 d. B, E, H, and K are the levels of ApoA mRNA relative to treatment with saline on day 5 of differentiation. C, F, I, 
and L are the levels of ApoA mRNA relative to treatment with saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 2. E2 up-regulated ApoB in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 M) 
or saline for 0 d, 5 d, and 25 d. A is the level of ApoB mRNA relative to osteoblasts treated with saline for 0 d. B is the level of 
ApoB mRNA relative to treatment with saline on day 5 of differentiation. C is the level of ApoB mRNA relative to treatment with 
saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.
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with 10-10 M E2 on days 0, 5, and 25 of differentiation 
(Figure 4A). When the concentration of E2 increased, 
expression of ApoD on days 5 and 25 of differentiation 
increased compared to that on day 0 of differentiation 
(Figure 4A). On days 5 and 25 of differentiation, the 
expression of ApoD mRNA was up-regulated by E2 in 
a dose-dependent manner (Figures 4B and 4C).

3.1.5. ApoE was up-regulated by E2 in a dose-dependent 

manner during osteoblast differentiation

Expression of ApoE was up-regulated significantly on 
days 5 and 25 of differentiation when compared with 
day 0 of differentiation both in osteoblasts treated with 
saline and osteoblasts treated with every concentration 
of E2 (Figure 5A). On days 5 and 25 of differentiation, 
the expression of ApoE mRNA was up-regulated by E2 
in a dose-dependent manner (Figures 5B and 5C).

Figure 3. E2 up-regulated ApoCs in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 M) 
or saline for 0 d, 5 d, and 25 d. A, D, G, and J are the levels of ApoC mRNA relative to osteoblasts treated with saline for 0 d. B, E, 
H, and K are the levels of ApoC mRNA relative to treatment with saline on day 5 of differentiation. C, F, I, and L are the levels 
of ApoC mRNA relative to treatment with saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 4. E2 up-regulated ApoD in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 

M) or saline for 0 d, 5 d, and 25 d. A is the level of ApoD mRNA relative to osteoblasts treated with saline for 0 d. B is the level 
of ApoD mRNA relative to treatment with saline on day 5 of differentiation. C is the level of ApoD mRNA relative to treatment 
with saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.1.6. ApoF was up-regulated by E2 in a dose-dependent 
manner during osteoblast differentiation

There was no significant change in the expression 
of ApoF in either osteoblasts treated with saline or 
osteoblasts treated with 10-10 M E2 on days 0 and 5 of 
differentiation (Figure 6A). However, expression of 
ApoF mRNA on day 25 of differentiation increased 
compared to that on day 0 of differentiation in osteoblasts 
treated with saline and osteoblasts treated with 10-10 M E2 
(Figure 6A). When the concentration of E2 increased, the 
expression of ApoF on days 5 and 25 of differentiation 
increased compared to that on day 0 of differentiation 
(Figure 6A). On days 5 and 25 of differentiation, the 
expression of ApoF mRNA was up-regulated by E2 in a 
dose-dependent manner (Figures 6B and 6C).

3.1.7. ApoH was up-regulated by E2 in a dose-dependent 
manner during osteoblast differentiation

The expression of  ApoH was down-regulated 
significantly on days 5 and 25 of differentiation when 
compared with day 0 of differentiation in osteoblasts 
treated with saline and osteoblasts treated with 10-10 
M E2 (Figure 7A). There was no significant change 
in the expression of ApoH in osteoblasts treated with 
10-9 M E2 on days 0 and 25 of differentiation (Figure 
7A). However, expression of ApoH mRNA on day 5 
of differentiation increased compared to that on day 
0 of differentiation in osteoblasts treated with 10-9 
M E2 (Figure 7A). When the concentration of E2 
increased, the expression of ApoH on days 5 and 25 
of differentiation increased compared to that on day 

Figure 5. E2 up-regulated ApoE in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 M) 
or saline for 0 d, 5 d, and 25 d. (A) is the level of ApoE mRNA relative to the level when osteoblasts were treated with saline for 
0 d. (B) is the level of ApoE mRNA relative to treatment with saline on day 5 of differentiation. (C) is the level of ApoE mRNA 
relative to treatment with saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 6. E2 up-regulated ApoF in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 M) 
or saline for 0 d, 5 d, and 25 d. (A) is the level of ApoF mRNA relative to the level when osteoblasts were treated with saline for 
0 d. (B) is the level of ApoF mRNA relative to treatment with saline on day 5 of differentiation. (C) is the level of ApoF mRNA 
relative to treatment with saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 7. E2 up-regulated ApoH in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 M) 
or saline for 0 d, 5 d, and 25 d. (A) is the level of ApoH mRNA relative to the level when osteoblasts were treated with saline for 
0 d. (B) is the level of ApoH mRNA relative to treatment with saline on day 5 of differentiation. (C) is the level of ApoH mRNA 
relative to treatment with saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.



www.biosciencetrends.com

BioScience Trends. 2016; 10(2):140-151.146

0 of differentiation (Figure 7A). On days 5 and 25 of 
differentiation, the expression of ApoH mRNA was up-
regulated by E2 in a dose-dependent manner (Figures 
7B and 7C).

3.1.8. ApoM was up-regulated by E2 in a dose-dependent 
manner during osteoblast differentiation

The expression of ApoM was down-regulated 
significantly on days 5 and 25 of differentiation when 
compared with day 0 of differentiation in osteoblasts 
treated with saline, osteoblasts treated with 10-10 M E2, 
and osteoblasts treated with 10-9 M E2 (Figure 8A). 
There was no significant change in the expression of 
ApoM in osteoblasts treated with 10-8 M E2 on days 
0 and 5 of differentiation or in osteoblasts treated 
with 10-7 M E2 on days 0 and 25 of differentiation 
(Figure 8A). The expression of ApoM on day 25 of 
differentiation decreased compared to that on day 0 
of differentiation in osteoblasts treated with 10-8 M 
E2, and the expression on day 5 of differentiation 
increased compared to that on day 0 of differentiation 
in osteoblasts treated with 10-7 M E2 (Figure 8A). The 
expression of ApoM on days 5 and 25 of differentiation 
increased compared to that on day 0 of differentiated in 

osteoblasts treated with 10-6 M E2 (Figure 8A). On days 
5 and 25 of differentiation, the expression of ApoM 
mRNA was up-regulated by E2 in a dose-dependent 
manner (Figures 8B and 8C).

3.2. Levels of apolipoprotein gene mRNA during the 
mineralization of cultured osteoblasts

3.2.1. Only ApoE was strongly induced during the 
mineralization of cultured osteoblasts

Primary mouse calvarial osteoblasts from days 0, 5, and 
25 of differentiation were pooled (18). Total RNA was 
isolated from each sample to identify the apolipoprotein 
genes whose expression was induced during osteoblast 
mineralization. β-actin was used as a control for 
standard gene expression. The level of expression of all 
of the apolipoprotein genes was relatively low except 
for ApoE at the three times during differentiation as 
described above (Figures 9A-9C). The level of ApoE 
expression was significantly lower than that of β-actin 
but was the highest among the apolipoprotein genes on 
day 0 of differentiation (Figure 9A). As time passed, 
the expression of ApoE was up-regulated and was 
close to the level of expression of β-actin on day 5 of 

Figure 8. E2 up-regulated ApoM in a dose-dependent manner during osteoblast differentiation. Primary osteoblasts were 
cultured in osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M, and 10-6 M) 
or saline for 0 d, 5 d, and 25 d. (A) is the level of ApoM mRNA relative to the level when osteoblasts were treated with saline for 
0 d. (B) is the level of ApoM mRNA relative to treatment with saline on day 5 of differentiation. (C) is the level of ApoM mRNA 
relative to treatment with saline on day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 9. Only ApoE was strongly induced during osteoblast differentiation. Primary mouse calvarial osteoblasts cultured in 
osteogenic differentiation medium were pooled on days 0, 5, and 25 of differentiation. Total RNA was isolated from each sample 
to identify the apolipoprotein genes whose expression was induced during osteoblast mineralization. (A), (B), and (C) are the 
levels of apolipoprotein gene mRNA relative to β-actin on days 0, 5, and 25 of differentiation, respectively. (D) is the level of 
apolipoprotein gene mRNA on days 5 and 25 of differentiation relative to day 0 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.
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differentiation (Figure 9B). When osteoblasts had fully 
differentiated, the level of expression of ApoE was 
higher than that of β-actin (Figure 9C).

3.2.2. Levels of mRNA of other apolipoprotein genes 
during the mineralization of cultured osteoblasts

ApoA-I, ApoA-II, ApoB, ApoH, and ApoM were down-
regulated significantly on days 5 and 25 of differentiation 
when compared to day 0 of differentiation (Figure 9D). 
ApoC-I expression on day 5 of differentiation was down-
regulated relative to day 0 of differentiation (Figure 
9D). ApoC-II expression on day 25 of differentiation 
was down-regulated relative to day 0 of differentiation 
(Figure 9D). The expression of ApoC-III and ApoF 
on day 25 of differentiation was up-regulated relative 
to day 0 of differentiation (Figure 9D). ApoE was the 
only apolipoprotein whose expression was strongly 
induced during osteoblast differentiation (Figure 9D). 
There was no significant change in the expression of 
ApoA-IV, ApoC-IV, and ApoD on days 0, 5, and 25 of 
differentiation (Figure 9D).

4. Discussion

Osteoblasts are key cells that produce a unique 
combination of extracellular proteins to form bone. 
These proteins include osteocalcin, alkaline phosphatase, 
and type I collagen (19). When the extracellular matrix is 
first deposited and not yet mineralized, it is rich in type I 
collagen and is referred to as the osteoid (19). As calcium 
phosphate accumulates in the form of hydroxyapatite, 
the matrix subsequently mineralizes, which results in 
the hard but lightweight composite material (with both 
organic and inorganic components) that is the major 
constituent of bone (8).
 Osteoblast lineage cells are a group of cells that include 
mesenchymal progenitors, preosteoblasts, osteoblasts 
(often called mature osteoblasts), bone-lining cells, and 
osteocytes (8). The process of osteoblast differentiation 
is often divided into stages of mesenchymal progenitors, 
preosteoblasts, and osteoblasts (8). When exposed to 
osteogenic differentiation medium supplemented with 
E2, bone marrow MSCs increase the expression of 
bone morphogenetic protein (BMP) and osteocalcin 
and significantly increase the deposition of calcium 
(20,21). E2 also stimulates the expression of osteogenic 
genes such as ALP and type I collagen by MSCs (22). 
Estrogens play a role in the osteogenic differentiation of 
MSCs since there is evidence that E2 supports growth 
and differentiation mostly through the ERα receptor (23). 
These findings suggest that estrogen may profoundly 
affect osteoblast physiology.
 Lipid metabolism has been shown to influence 
bone metabolism. In particular, dietary lipids, such as 
essential and polyunsaturated fatty acids (24,25) and 
lipid soluble vitamins, e.g., vitamin K (26,27), play 

an important role in bone metabolism. Lipoproteins 
function as plasma carriers of these lipids, and cellular 
lipoprotein uptake is dependent on the interaction 
of their protein moieties, i.e., apolipoproteins with 
endocytotic cell surface lipoprotein receptors. 
 ApoA-I and ApoB represent the main protein 
components of HDL and low-density lipoproteins 
(LDL), respectively (28-30). Both ApoB-48 and 
ApoB-100 are encoded by the same gene. The amino 
acid sequence of ApoB-48 represents 48% of the 
initial sequence of ApoB-100 (2). ApoB-48 is only 
synthesized by the intestines in humans, while ApoB-
100 is primarily synthesized by the liver (31). ApoE is 
important in transporting dietary and endogenous lipids 
to peripheral tissues for energy supply (32). ApoA-I 
plays a crucial role in returning excess cholesterol from 
peripheral tissues back to the liver (28,30). ApoC-II 
is a co-factor of lipoprotein lipase (LPL) (33), which 
mediates the hydrolysis of triglycerides in the core 
of chylomicron and very low-density lipoprotein 
(VLDL) particles (34), while ApoC-III inhibits the 
function of LPL (35). The nature and function of the 
major apolipoproteins are summarized in Table 2. 
Apolipoproteins are physiologically important and are 
associated with different diseases (36-38), but their 
function has yet to be fully elucidated.
 The ApoA-I mimetic peptide, D-4F, reduced serum 
markers of bone resorption in mice (39). Decreased bone 
mineral density was noted in subjects carrying familial 
defective ApoB-100 (40). An ApoE gene deficiency 
enhances the p53-mediated apoptosis induced by a 
high-fat diet in osteoblastic cells (41). Lipoprotein 
receptors include the low-density-lipoprotein receptor-
related protein (LRP) family, a group of evolutionarily 
conserved cell-surface receptors with a function in a 
range of cellular processes (42). Lipoprotein receptors 
are also involved in the regulation of osteoblast function. 
Positional cloning studies of monogenic bone disorders 
yielded initial evidence that LRP5, in addition to Wnt/
β-catenin signaling, is a major pathway in the regulation 
of osteoblast proliferation and differentiation, osteocyte 
apoptosis, and bone formation (43-45).
 The current study first analyzed apolipoprotein 
gene expression during osteoblast differentiation in 
vitro. Results showed that the level of ApoE mRNA 
expression was highest among the apolipoprotein 
genes in primary osteoblasts isolated from newborn 
mice calvaria (Figure 9A). As time passed, expression 
of most of the apolipoprotein genes changed, but only 
ApoE was strongly induced during the process of 
osteoblast differentiation in vitro (Figure 9D). This 
finding accords with results of a study by Schilling et 
al. (18). However, Schilling et al. only screened five 
apolipoproteins, i.e. ApoA-I, ApoB, ApoC-I, ApoD, 
and ApoE. The current study expanded this scope by 
analyzing all of the apolipoprotein genes that were not 
examined by previous studies. The study by Schilling et 
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al. also noted increased bone formation in mice lacking 
ApoE. However, a study by Hirasawa et al. proposed 
that an ApoE gene deficiency enhances the reduction of 
bone formation induced by a high-fat diet through the 
stimulation of p53-mediated apoptosis in osteoblastic 
cells (41). Although these two studies contradict 
each other, both found that ApoE is involved in bone 
metabolism, which the current study noted as well.
 Given that E2 promotes osteoblast differentiation 
and stimulates the expression of osteogenic genes, the 
effect of E2 on apolipoprotein genes was observed 
during osteoblast differentiation in vitro. Many clinical 
trials have shown that estrogen treatment may improve 
the lipid profile (46-48). ApoA-I is known to be a 
typical "good" apolipoprotein, while ApoB is a typical 
"bad" apolipoprotein. Hormone therapy increased the 
levels of ApoA-I mRNA in mononuclear cells from 
hypercholesterolemic postmenopausal women (49). In 
the liver, E2 regulates the rate of synthesis of structural 
apolipoproteins for VLDL and HDL. E2 stimulates 
ApoA-I and ApoA-II synthesis, while reducing the rate 
of ApoB-100 synthesis (50). Estrogen-related receptor 
alpha (ERRalpha) activates the ApoA-IV promoter via 

interaction with the ApoC-III enhancer in both humans 
and mice and it increases the level of ApoA-IV mRNA 
(51). Treatment of the human hepatocarcinoma cell line 
HepG2 with low levels of estrogen resulted in a doubling 
of the concentration of ApoC-II mRNA (52). Estrogen 
up-regulates ApoE gene expression by increasing ApoE 
mRNA in the translating pool via the estrogen receptor 
alpha-mediated pathway (53). Estrogen up-regulates 
ApoM gene expression via the estrogen receptor in 
HepG2 cells (54). No previous studies have examined 
the effect of estrogen on the expression of the ApoD, 
ApoF, and ApoH genes. Interestingly, the current study 
found that all of the apolipoprotein genes were up-
regulated by 17β-estradiol in a dose-dependent manner 
during osteoblast differentiation (Figures 1-8). Except 
for ApoB, this finding accords with the results of the 
aforementioned studies. However, estrogen increased 
the level of ApoB mRNA and enhanced the secretion of 
ApoB-100 containing lipoproteins in human placental 
BeWo cells (55). This result suggests that estrogen 
regulating ApoB expression might be tissue-specific. A 
study contends that there is tissue-specific transcriptional 
regulation present in the ApoB gene (2).
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Table 2. Properties and functions of major apolipoproteins

Name 

ApoA-I 

ApoA-II 

ApoA-IV 

ApoA-V 

ApoB-48

ApoB-100

ApoC-I 

ApoC-II 

ApoC-III

ApoC-IV

ApoD

ApoE

ApoF

ApoH

ApoM

Molecular
weight (Da)

28016

17414

31570

N/A

241000

545000

6600

8800

8750

N/A

29000

34100

29000

50000

26000

Origin 

Liver and intestines

Liver and intestines

Liver and intestines

Liver

Intestines

Liver and intestines

Liver

Liver

Liver

Liver

Brain, adrenal glands,
kidneys, pancreas, placenta,
intestines, and liver 

Liver, brain, skin,
and macrophages

Liver

Liver and intestines

Liver

Abbreviations: HDLs: High-density lipoproteins; LCAT: Lecithin-cholesterol acyltransferase; SR-B1: Scavenger receptor class B1; CMs: 
Chylomicrons; IDLs: Intermediate-density lipoproteins; VLDL: Very-low-density lipoprotein; LDLs: Low-density lipoproteins; LPL: lipoprotein 
lipase; HSPGs: Heparan sulfate proteoglycans; CETP: Cholesteryl ester transfer protein; APA: antiphospholipid antibodies.

Lipoprotein association 

HDL 

HDL 

CM

VLDL

CM and CM remnants 

VLDL, IDL, and LDL 

CM, VLDL, IDL, and HDL 

CM, VLDL, IDL, and HDL

CM, VLDL, IDL, and HDL 

CM, VLDL, IDL, and HDL

HDL

CM, CM remnant, VLDL,
IDL and HDL 

 HDL and LDL 

LDL

HDL

Principal function 

Cofactor of LCAT; 
Prostacyclin stabilizer; 
Ligand of SR-B1 

Inhibits LCAT 

Promotes assembly of CM; 
Acute satiety factor

Enhances VLDL lipolysis and clearance

Formation of CM particles 

Formation of VLDL/LDL particles;
Ligand of LDL receptor

Inhibits CETP by altering the electric charge of HDL

Cofactor of LPL

Inhibits LPL and HL; 
Promotes assembly and secretion of VLDL

Not specified

Transports several small hydrophobic compounds

Ligand of LDL receptor/LDL receptor-related
protein; Binds to HSPGs 

Inhibits CETP

Cofactor for the binding of certain APA to
anionic phospholipid; Enhances ApoC-II-activated
LPL activity

Contributes to cellular cholesterol efflux
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 All of the apolipoprotein genes were up-regulated 
by E2 in a dose-dependent manner during osteoblast 
differentiation. Moreover, the level of ApoE mRNA was 
the highest among the apolipoproteins at every stage 
of osteoblast differentiation in vitro, and only ApoE 
was strongly induced during this process, suggesting 
that it might be involved in osteoblast differentiation. 
In most cases, levels of gene expression were analyzed 
with qRT-PCR. However, the level of mRNA does 
not always correlate with the level of protein. Thus, 
immunoblot experiments would need to be performed to 
determine whether 17-beta-estradiol increases the level 
of apolipoproteins in the future. 
 Given that E2 enhances osteoblast physiology, 
including differentiation, the hypothesis is that E2 
promotes osteoblast differentiation by up-regulating 
ApoE gene expression. Further study is needed to 
confirm this hypothesis. To explore the biological 
relevance of the function of ApoE and E2 in osteoblast 
differentiation and function, a better approach would 
have been to overexpress or knock down ApoE and 
then culture osteoblasts in osteoblastic differentiation 
medium. The bone phenotype could also be determined 
in ovariectomized ApoE-/- mice.
 In conclusion, this study has shown that all of the 
apolipoprotein genes were up-regulated by E2 in a dose-
dependent manner during osteoblast differentiation, 
but only ApoE was strongly induced during the 
mineralization of cultured osteoblasts (Table 3). These 
results suggest that ApoE might be involved in osteoblast 
differentiation. The hypothesis is that E2 promotes 
osteoblast differentiation by up-regulating ApoE gene 
expression, but further study is needed.
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