BioScience Trends. 2015;9(3):160-168. (DOI: 10.5582/ bst.2015.01041)

Polyphosphate-induced matrix metalloproteinase-3-mediated proliferation in rat dental pulp fibroblast-like cells is mediated by a Wnt5 signaling cascade.

Ozeki N, Yamaguchi H, Hase N, Hiyama T, Kawai R, Kondo A, Nakata K, Mogi M


SUMMARY

Although it is known that inorganic polyphosphate [Poly(P)] induces differentiation of osteoblasts, there are few reports concerning its effects on cell proliferation, especially in fibroblasts. Because we found that Poly(P) stimulates the proliferation of purified rat dental pulp fibroblast-like cells (DPFCs), matrix metalloproteinase (MMP)-3 small interfering RNA (siRNA) was transfected into purified rat DPFCs to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation in DPFCs. Realtime quantitative polymerase chain reaction, Western blots, an MMP-3 activity assay, and an enzyme-linked immunosorbent assay to assess cell proliferation were used in this study. Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity and cell proliferation. Silencing of MMP-3 expression with siRNA yielded potent and significant suppression of Poly(P)-induced MMP-3 expression and activity, and decreased cell proliferation. Poly(P) also increased mRNA and protein levels of Wnt5 and the Wnt receptor Lrp5/Fzd9. Although exogenous MMP-3 could not induce Wnt5, exogenous Wnt5 was found to increase MMP-3 activity and, interestingly, the proliferation rate of DPFCs. Transfection with Wnt5a siRNA suppressed the Poly(P)-induced increase in MMP-3 expression and suppressed cell proliferation. These results demonstrate the sequential involvement of Wnt5 and MMP-3 in Poly(P)-induced proliferation of DPFCs, and may have relevance in our understanding and ability to improve wound healing following dental pulp injury.


KEYWORDS: Inorganic polyphosphate, differentiation, osteogenic cells, Lrp5

Full Text: