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1. Introduction

Minimally invasive theranostics is one of the most 
recent clinical hot topics. Theranostics will give huge 
simplification for clinical application in the future (1). 
Optical coherence tomography (OCT) is one of the most 
promising, innovative and rapidly emerging biomedical 
imaging modalities. It gradually serves for minimally 
invasive surgical guidance. It can acquire real-time 
tomographic images with micrometer resolution by using 
visible or infrared light (2,3). OCT imaging has been 
diffusely implemented across various disciplines due 
to its high-resolution, high-speed, low-cost, radiative-
free, invasive-free, and convenience performance (4). 

Typical types of OCT scanning include galvanometer 
scanning, microscope, fiber-optic catheter, handheld 
probe, endoscope, etc. Therefore, OCT is widely used 
in intraoperative imaging, pre-operative diagnostic 
and postoperative evaluation (2,5-9), especially, in 
ophthalmic lesion detection and diagnosis (10-12). 
OCT is treated as a minimally invasive, real-time 
diagnostic approach for minimally invasive integration 
of diagnostics and therapeutics.
 Intraoperative neurosurgical imaging with real-
time identification are special and significant research 
for neurosurgical guidance and resection, which can 
save patients' lives and improve postoperative quality 
of lives. Furthermore, many advanced technologies 
are widely used in intraoperative brain tumor detection 
and neurosurgical guidance, including computer 
tomography (CT) (13), diffusion-weighted magnetic 
resonance imaging (MRI) (14), fluorescence (15,16) and 
fluorescence spectral analysis (17), Raman spectroscope 
(18,19), ultrasound (20), photoacoustic imaging (21), 
biomarkers (22), and evaporative ionization mass 
spectrometry (23) etc. OCT can visualize sub-surface 
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tissue structure non-invasively, the micro-meter 
depth microstructure of tissue also has an intuitive 
demonstration for neurosurgeons, and the research 
of neurosurgical OCT are launching gradually in 
neurosurgical diagnostics and guidance.
 In clinical applications, the precision of minimally 
invasive theranostics, which integrates multimodal 
diagnosis and therapeutic methods, plays an important 
role in the treatment of lesions (1). A 5-aminolevulinic 
acid (5-ALA) guided laser ablation system has been 
proposed, and it has been applied in clinical research 
by Liao et al. (17,24,25). A fluorescence-guided laser 
ablation system to resect residual cancer for soft tissue 
sarcoma has been investigated in a mouse model by 
Lazarides et al. (26). Integration of diagnostics and 
therapeutics has been used in the treatment of tumorous 
tissue, such as the integration of ultrasound and robotic 
technology (27-29). OCT has been widely used in 
imaging to improve diagnostic accuracy and precision, 
and it can guide therapies via providing intraoperative in 
situ abundant information of tumorous tissue (30-32).
 In this paper, we review brain imaging, neurosurgical 
guidance and theranostics using OCT-based system. In 
brain imaging, "optical biopsy", brain cerebral vascular 
detection, and fiber nerve tracts are the preclinical and 
clinical targets. In neurosurgery, the neurosurgical 
guidance-based OCT system can realize the identification 
of tumorous tissue and non-tumorous tissue, as well 
as intraoperative guidance. As future research and 
clinical applications, we introduce the key technologies 
and clinical research of theranostics, which is the 
integration of OCT and other therapies in neurosurgery. 
Furthermore, we discuss the development and future 
application of integrated OCT and laser ablation 
for minimally invasive theranostics in a prospective 
intelligent medical system.

2. Brain tissue imaging with OCT system

Optical imaging and detection are a non-invasive 

or minimally invasive method to diagnose lesions, 
so that the optical imaging system can widely be 
devoted to biomedical imaging. Due to the feature 
of high resolution, OCT can present a more precise 
microstructure of brain tissue. Moreover, functional 
imaging based on the polarization property and Doppler 
effect has been applied in detecting brain function for 
nerve fiber tracking and cerebral metabolism. The 
functional imaging also includes angiography imaging to 
detect blood flow information.
 Time domain (TD) and Fourier domain (FD) OCT 
system are usually devoted in biomedical imaging. A 
coupler divides a beam of low-coherence light into two 
paths. The two light beams, which reflect or scatter from 
the sample and reference arm, form an interference field 
in a coupler. The ability to discriminate two scattering 
objects in-depth is up to coherence length of the low 
coherence light source (2,33). The fundamental principal 
schematic of time domain OCT is as shown in Figure 
1A. By contrast, in FD-OCT, the reference mirror keeps 
motionless. The basic principal of FD-OCT is that optical 
coherence frequency of the coherence pattern within the 
envelope of the light source spectrum increases with the 
distance of the scattering event from a reference mirror 
increase (33). Applying a Fourier transform provides the 
reflectivity profile as a function of depth along the A-scan 
within the sample or biological tissue (Figure 1B). 
The depth information of sample is an afforded signal 
transform without A-scan. 
 In brain imaging, OCT is a useful tool for detecting 
brain tissue and lesions. It can provide micrometer 
level information and the function of optical biopsy. 
Functional information such as cerebral vascular and 
fiber bundle, gives an important indicator for avoiding 
this position to save brain function.

2.1. Brain imaging and 'biopsy'with OCT system

OCT is high-resolution imaging for brain imaging and 
optical biopsy (34). OCT demonstrates that micrometer-
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Figure 1. Basic schematic representation. (a) Time domain optical coherence tomography. (b) Spectral domain optical 
coherence tomography.
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the angiography and Doppler effect-based OCT imaging 
system. Furthermore, a novel technique combining 
optogenetic stimulation and OCT technology can 
monitor blood flow and cerebral hemodynamics.
 During seizures' progression, optical characteristics 
will change with cerebral function. Yaseen et al. reported 
that OCT detects the changes of optical properties of 
cortical tissue in mice during the induction of global and 
focal seizures in vivo (45). Yashin et al. investigated a 
contrast-enhanced optical Doppler tomography system 
(ODT) with intralipid to provide monitoring of cerebral 
blood flow velocity (46). Furthermore, imaging of the 
hippocampal area and white matter are presented by OCT 
system in vivo in an animal model (47). Optogenetic 
stimulation combined with OCT system is proposed for 
monitoring cerebral hemodynamics (48). Srinivasan et 
al. proposed an optical microscopic method with a multi-
parametric OCT platform for measuring blood flow 
and recovery of ischemic stroke in brain (49). Recent 
development of OCT-based angiography has started 
to shed some new light on cerebral hemodynamics 
in neuroscience. Baran et al .  demonstrated the 
effectiveness of proposed automatic image segmentation 
and enhancement methods for OCT-based micro-
angiography (OMAG) and tissue injury mapping (TIM) 
in a mouse cerebral cortex (50,51).
 Multimodal optical imaging system can acquire the 
information of multiple intrinsic visualization view and 
facets of cerebral blood flow, and metabolism in healthy 
tissue and tumorous tissue (52,53). Moreover, a summary 
of OCT angiography studies is provided for stroke, 
traumatic brain injury, and subarachnoid hemorrhage 
cases on rodents (54). This review gave an overview 
of the recent developments of angiography-based OCT 
imaging techniques for neuroscience applications in an 
animal model. Figure 2 shows that dual-wavelength laser 
speckle contrast imaging (DWLS) (Figure 2A) enabled 
rapid prediction of the intact infarct area and hemoglobin 
oxygenation throughout the intact brain in a mouse 
model. The OMAG system (Figure 2B) provides detailed 
information of blood perfusion dynamics down to the 
microvascular or capillary level in a region of interest 
(ROI) in regard to ischemia.

2.3. Brain nerve fiber bundle imaging based on 
functional OCT/OCM

Fiber bundle imaging and orientation tracts are 
outstanding doubts and troubles. The method of nerve 
fiber tracts imaging is usually based on MRI-diffusion 
tensor imaging (MRI-DTI) tractography (55) with a high 
intensity MRI imaging system. However, this diagnosis 
method is not enough accurate due to the low resolution 
of MRI imaging compared to other modal imaging 
systems. Thus, the nerve fiber tracts will give more 
intuitive and more precise viewing with micrometer-
level resolution imaging. Recently, Wang et al. reported 

scaled, cross-sectional imaging could provide micro-
morphological information to diagnose and analyze. 
Therefore, OCT has the potential to serve as a type of 
optical biopsy where morphology is assessed with in 
situ, real-time imaging, unlike histological section, which 
needs removal of specimens and long-time processing 
for microscopic examination (35). It is possible that OCT 
will replace histological section in some degree.
 Ultrahigh resolution (UHR) OCT, of which the 
resolution can reach one micrometer or sub-micrometer 
level, is investigated to image high scattering tissue. 
Ultrahigh resolution has remarkable characteristics for 
detecting microstructure in OCT imaging. OCT has been 
widely used in brain imaging (36-38). Bizheva et al. 
reported that UHR OCT was investigated for imaging 
of brain tissue morphology using a number of animal 
models ex vivo and in vitro (39). The scale of UHR OCT 
imaging is from neuron cells to an intact animal brain. 
Moreover, UHR OCT is a successfully translational 
diagnosis tool, since it is capable of discriminating 
healthy brain tissue and various neuro-pathologies. For 
imaging deep brain tissue in vivo, a forward scanning 
single mode fiber (φ125 μm) is used as detecting 
probe (40,41). Some advanced technologies have been 
integrated into the OCT system for improving light 
penetration to enhance imaging depth in highly scattering 
brain tissue. Imaging depth of OCM is improved 
through intrinsic scattering contrast (41). This method 
does not require the addition of dyes or contrast agents. 
Vertical cavity surface emitting laser (VCSEL) sweep 
source OCT offers an extended imaging depth range of 
more than 2 mm in highly scattering turbid biological 
tissue (42). With technical improvement, imaging 
depth of OCT will increase in research and clinical 
application. Whole brain imaging in an animal model 
is a big challenge in the current optical field, especially 
in a freely moving animal. It is meaningful for future 
research in brain imaging. Whole brain imaging has 
been developed through techniques for reconstruction 
and segmentation of sliced brains (43), and quantitative 
analysis make brain imaging a more practical clinical 
value (44). However, whole brain imaging is unnecessary 
with OCT-based system in intraoperative brain imaging, 
while a large-field view can provide a great amount of 
information for a specialist to guide and identify brain 
tissue feature.

2.2. Cerebral vascular and angiography imaging with 
OCT-based system

Brain is a complicated and comprehensive component 
in the central nervous system. A brain tumor will affect 
nervous function and quality of patients' lives. OCT 
is gradually applied into cerebral functional imaging 
during brain activity or disease progression. Recently, 
to investigate blood flow and cerebral hemodynamics in 
neuroscience, many researchers have been investigating 
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that a multi-contrast OCT (MC-OCT) shows nerve 
fiber tracts and comprehensive brain anatomy ex vivo in 
animal brain. The MC-OCT has a novel high resolution 
and improvement of scanning structure with a serial 
optical coherence scanner (SOCS). Neighboring fiber 
tracts with different orientations can be distinguished 
in tomographic optical slices, two-dimensional en face 
images and three-dimensional volumetric images (56,57). 
Furthermore, a combination of diffusion tensor imaging 
(DTI) and SOCS imaging can describe the orientation of 
nerve fiber tracts on postmortem human medulla (58,59). 
Figure 3 shows the en face optic axis orientation maps in 
fiber orientations of the coronal plane. Different colors 
represent the different fiber directions as shown on the 
color wheel; the brightness of colors is determined by the 
en face retardant values (58).
 The nerve fiber tracts are equally important for 
neuroimaging and neurosurgical guidance. Deep-OCM 
allows, after minor surgery, in situ imaging of single 
myelinated fibers over a large fraction of the sciatic 
nerve (60). To detect nerve fiber bundles based on 
measurement of birefringence, polarization sensitive 
OCT (PS-OCT) demonstrated good quality for detection 
(61-63). However, these studies are still based on animal 
experiments, and usually implement the detection of 
brain function the brain in vivo living mouse. These 
studies are meaningful and significant to recognize brain 
function of nerve fiber tracts.

3. Neurosurgical monitoring and neurosurgical 
guidance based on OCT technology

OCT-based clinical application in neurosurgical 
procedures is a main direction in biological tissue. It is 

more important for intraoperative imaging with high 
spatial resolution and identification of tumor margins for 
neurosurgical guidance.
 In neurosurgery, OCT-related system will give real-
time information for guiding neurosurgical resection. 
The information can include morphology of tumorous 
tissue and non-tumorous tissue. In order to acquire 
more information and a larger imaging field of view, 
integration of OCT and other imaging modalities 
can provide appropriate neurosurgical  guidance and 
treatment. Furthermore, integration of OCT and laser 
ablation system can give precision treatment for brain 
tumors.

3.1. Identification of tumorous and non-tumorous tissue 
with OCT system

High-resolution cerebral tumor imaging is very useful for 
reseting of brain tumors, where the tumor or abnormal 
lesion can be discriminated from normal brain tissue 
by OCT system. Many scientists and surgeons are 
turning in vivo OCT tumor imaging research and clinical 
translational practice into reality. OCT imaging plays a 
significant role in the resection of brain tumors. Deep 
brain tumor imaging also has profound significance for 
identification of tumorous tissue.
 During neurosurgical tumor resection, real-time 
identification of tumors gives ample evidence for 
operation. Boppart et al. reported that an intraoperative 
OCT system could identify tumor regions and localize 
tumor margins based on the optical attenuation in 
backscatter intensity. OCT images of the cortex were 
acquired in two and three dimensions in the cadaveric 
human cortex with metastatic melanoma (64). Bizheva 
et al. reported the first studies on ex vivo human tissues 
(65). Böhringer et al. reported imaging of human brain 
tumor specimens using TD-OCT and SD-OCT system 
to identify tumor and normal tissue using optical 
characteristics (66-68). Due to the intrinsic optical 
property of brain tissue, near-infrared OCT has a deeper 
viewing field/range than visible light used in the OCT 
system (42,67-69). For the discrimination of tumor, the 

Figure 2. (a) A system combined DWLS with OCT used to 
monitor microvasculature and microstructure in mouse 
cortex through whole skull. (b) Combination of TPLSM 
angiography with Doppler OCT imaging for blood flow in 
the mouse cortex. From Ref. (54) (Reprinted with permission).

Figure 3. En-face optic axis orientation maps produced 
by SOCS quantitatively depict in-plane fiber orientations 
in the medulla. Each map is composed of eight (2 × 4) serial 
scans. The color wheel shows the orientation values ranging 
between −90° and 90°. The brightness of colors in the images 
is determined by the en-face retardance values. From Ref. (58) 
(Reprinted with permission).
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longitudinal tomographic OCT image is the basis through 
measuring the optical attenuation of signal in three-
dimensional topology. Furthermore, brain tumor has a 
more complex microstructure and micromorphology. 
However, it is difficult to identify tumor margins from 
the longitudinal/axial map, because the algorithm based 
on the optical attenuation coefficient of A-scan will get 
the map of an alignment in the B- or C-scan. Such an 
algorithm adds the longitudinal analysis to identify the 
boundary of tumorous tissue.
 Multimodal optical  imaging can image the 
microstructure, cerebral oxygen delivery and energy 
metabolism of brain tumors. Yaseen et al. investigated 
the combination of two-photon microscopy (TPM) and 
confocal lifetime microscopy, laser speckle imaging, 
OCT imaging, and optical intrinsic signal imaging to 
monitor cerebral oxygen delivery and energy metabolism 
(51). It will be used into intraoperative imaging and 
neurosurgical guidance for detecting metabolism 
and identification of tumorous tissue. Two-imaging 
modalities, including cross-polarization OCT and 
microangiographic OCT, are integrated into multimodal 
(MM) OCT system for differential diagnostics of 
normal and diseased brain tissue with glioblastoma (52). 
Microangiographic OCT allowed the visualization of 
blood vessels in brain tissues, revealing changes in the 
form and sizes typical of the tumor vessels.
 For identifying different kinds of brain tumors, full-
field OCT (FF-OCT) system, which can detect the 
microstructure of tumor, has been proposed. Assayag 
et al. applied a FF-OCT imaging system to structural 
imaging of brain tumor specimens (70). However, the 
diagnostics of brain tumors are only implemented in 
brain specimens ex vivo. FF-OCT in LLTech Corporation 
(71) uses infrared light to take optical biopsies beneath 
the surface of tissue under analysis instead of histological 
section. Intraoperative precision diagnostics has some 
space for improvement. Figure 4 demonstrates that FF-
OCT detects cerebral tissue architecture modification. 
Infiltrating tumorous glial cells are not detectable in this 
system, but low-grade gliomas are mistaken for normal 
brain tissue on FF-OCT images. However, in high-
grade gliomas (Figure 4 G-K), the infiltration zone of 
brain tumors has occurred to such an extent that normal 
parenchyma structure is lost (70).

3.2. Neurosurgical guidance with intraoperative OCT 
imaging and integrated multi-modality imaging

Intraoperative neurosurgical imaging and guidance 
are crucial for non-invasive identification of brain 
tumor and non-tumor tissue on a facial map together 
with longitudinal tumor margin in real time. However, 
the image quality and the imaging depth limits the 
identification of longitudinal tumor margin. During 
neurosurgery, intraoperative diagnosis plays an 
important role in surgical guidance. The speed of OCT 

imaging will strongly influence intraoperative diagnosis 
and visualization. The improvement of imaging speed 
promotes the efficient of identification and diagnosis.
 For giving an intuitive view of brain tissue, 
some researchers have designed and manufactured a 
neurosurgical probe of OCT, including endoscopic, 
needle-type, hand-held probe, and other kinds of 
neurosurgical OCT robotic arms (68,72-79). Böhringer 
et al. used a modified rigid endoscopic probe to mount 
OCT device for detecting tumor during resection of 

Figure 4. Glioma. Assayag et al. reported three different 
cases shown in (A-B; C-F; G-L). (A-B) Microcysts (arrows) 
in an oligo-astrocytoma grade 2; (C-D) microcystic areas and 
Virchow-Robin space (arrows) in an astrocytoma grade 2; (E-
F) enlarged Virchow-Robin spaces in an astrocytoma grade 
2; (G-H) microvessels (arrow) and tumorous glial cells in an 
oligoastrocytoma grade 3; and (I-J) pseudo-palisading necrosis 
in an oligo-astrocytoma grade 3. (K-L) Vasculature (arrows) in 
an oligo-astrocytoma grade 3. (B, D, F, H and J) Hemalun and 
phloxin stainings and CD34 immunostaining (L).Scale bars 
show 250 μm (A, B), 100 μm (C-F), 20 μm (G, H), and 10 μm 
(I-L). From Ref. (70) (Reprinted with permission).



www.biosciencetrends.com

BioScience Trends. 2018; 12(1):12-23. 17

intrinsic brain tumors (68). In microsurgery, Kang 
et al. proposed a common-path OCT system with 
an applicable fiber-optic endoscopic probe (74,76). 
Furthermore, a hand-held forward-viewing probe is 
useful for neurosurgical imaging and residual tumor 
detection due to the irregular and limited resection 
cavity. Liang et al. and Sun et al. developed a needle-
type forward-imaging OCT probe, which was fit for 
minimally invasive tools (77-79).
 Another issue is the intraoperative detection of 
residual tumor in neurosurgery. Giese et al. reported 
that tumorous tissues of human brain and areas of the 
resection cavity were analyzed during the resection 
of gliomas within OCT guidance (80). Recently, 
excellent research reported by Kut et al. investigated 
a self-regulating OCT system on ex vivo human tissue 
specimens of 32 patients (81), and the method to 
discriminate between normal and tumorous tissues is 
based on the optical attenuation coefficient measured by 
developing nanoparticle-based OCT imaging contrast 
agents during operation (82,83). The substantial 
contribution of this research is the performance of 
diagnostic analysis to derive an attenuation threshold 
to distinguish tissues with high sensitivity and 
specificity. For the identification of tumor margins, 
some algorithms assist the diagnosis of tumorous tissue, 
such as pixel classification-based method (84), and 
attenuation coefficient-based method (85). Machine 
learning method has been used in the classification 
of skin tumors with OCT images (86), it has potential 
application on brain tumor imaging. Furthermore, on 
the aspect of imaging speed, the technology of graphic 
processing unit (GPU)-based acceleration provides 
a huge potential application. Zhang et al. use the 

dual GPU to accelerate the speed of FD-OCT system 
so that the system can be used in the intraoperative 
microscopic guidance. This research provides an access 
to fast image processing for microscopic surgery. 
It has potential to translate into a typical clinical 
application in the future (87). The intraoperative 
real-time identification of cancerous tissue and non-
cancerous tissue provides a similar function for real-
time histological section to guide neurosurgery. OCT 
system is a promising intraoperative imaging tool for 
neurosurgical guidance (88). However, there is still 
lack of brain functional information in the cerebral 
cortex and deep brain tissue. Figure 5 shows that OCT 
attenuation maps aided the neurosurgeon in identifying 
regions of tumorous tissue versus non-tumorous tissue 
(white matter) before and after surgery.
 Multimodal imaging system is more convenient 
for neurosurgical guidance for tumor resection. Sun et 
al. reported that a hand-held probe has been proposed 
in the cadaveric in situ testing for providing updated 
image information; however, the probe has a forwarding 
viewing for neurosurgical OCT attached with tracking 
markers (89). Liang et al. investigated a combination 
of OCT with an MRI-compatible needle-type probe for 
tumor resection in neurosurgical guidance. The probe 
has capability of providing microscale architecture in 
conjunction with macroscale MRI tissue morphology 
for human patients in real-time for in situ imaging and 
neurosurgical guidance (90). An integrated system of 
photoacoustic OCT and surgical microscope has been 
proposed, and it can guide surgeons through providing 
the intraoperative real-time tumor margins, tissue 
structure and a magnified view of region of interest 
(91). Multimodal imaging system will acquire multi-

Figure 5. In vivo OCT imaging brain cancer in a mouse with patient-derived high-grade brain cancer (GBM272). From Ref. (81). 
(Reprinted with permission).
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dimension information of intraoperative biological 
tissue for helping real-time surgical diagnosis and 
analysis. It can decrease the difficulty of intraoperative 
identification of tumor margins for neurosurgical 
guidance.
 The main challenges of large-scale/wide-field 
scanning of the resection zone are the creating a map 
of the cavity, scanning of the perpendicular surface and 
merging an intraoperative visualization of the three-
dimensional data. Some novel techniques may assist 
surgeons to achieve micrometer precision incisions, 
reducing the risks of damage to the surrounding tissue, 
and minimizing intraoperative complications (92). 
Overlaying microscopy images with depth information 
from OCT could lead to improved detection of residual 
tumor cells (58,93). Combining OCT imaging with an 
operating microscope (94,95) can offer intuitionistic 
viewing of the surgical area. Robotized operating 
microscope integrated OCT imaging could scan larger 
scale tissue surface area through automated movement 
of the microscope. Hence, the microscope assisted OCT-
based neurosurgical guidance can provide more high-
resolution and wild-field intuitive viewing to perform 
precision surgical resection.

3.3. Integrated OCT and laser ablation system for real-
time treatment of diseased tissue

Minimally invasive theranostics for treatment of the 
diseased soft biological tissue is a developmental and 
potential clinical application. Integration of in vivo/
in situ imaging and therapy will provide some more 
possibilities for intraoperative diagnosis and therapeutic 
(17,24-29,96). With respect to tumor resection in soft 
biological tissue, OCT-guided laser ablation is a novel 
theranostics method, especially in brain tumor resection. 
Some research demonstrated that the integration of OCT 
and laser ablation provide a novel treatment approach 
for the tissue's lesion. For malignant tumor treatment, 
the challenge is visualization of the treatment response 
dynamics in microscale spatiotemporal resolution during 
the surgical operation. Minimally invasive integration 
of diagnosis and therapy will decrease the radiative dose 
and increase the efficiency of tumor treatment.
 In surgical procedures, OCT can monitor and 
capture the dynamic changes during the laser ablation 
or laser surgery for the diseased tissue. OCT-guided 
laser surgery has been developed for use in ophthalmic 
surgery (97,98). Boppart et al. reported that it is a new 
approach, where the integration of real-time high-
resolution OCT and laser ablation can realize the 
treatment of brain tumors in vivo and in situ; the system 
could image the dynamic changes before, during, and 
after intraoperative laser ablation scenarios (30). Meng-
Tsan Tsai et al. proposed an OCT guided laser-assisted 
drug delivery system, which can monitor drug diffusion 
through an induced microthermal ablation zones array 

(99). The integration of OCT and laser ablation will 
provide an intuitive view for real-time treatment of 
diseased tissue.
 With respect to soft tissue in situ treatment, the in 
situ monitoring of laser ablation results provides intuitive 
observation for evaluating the laser ablation during 
the operation. Ohmi and Haruna et al. demonstrated 
an effective method for in situ observation of laser 
ablation of soft-biological tissue based on OCT imaging 
(100,101). For the improvement of imaging speed, the 
swept source OCT has been investigated in the system 
with 25 Frames/s imaging speed for in situ observation 
(102-104). In Ohmi's research, OCT system is only 
used in monitoring the process of laser ablation and 
post-operation imaging. It is still a dilemma how to 
use integration of OCT and laser ablation treatment. 
OCT guided laser resection in surgery has also been 
developed by Nitesh Katta et al. The smart laser knife 
system is used for surgical guidance (105,106). These 
research methods take the utility of OCT imaging 
and monitoring the laser ablation into consideration. 
Enhanced tissue ablation efficiency with a mid-infrared 
nonlinear frequency conversion laser system has been 
proposed, and the results can be monitored using OCT 
imaging (107). However, a large-scale OCT scanning 
and laser ablation model during OCT-guided laser 
ablation treatment are still problematic, as well as real-
time monitoring laser ablation. The integration of OCT 
and laser ablation has met same dilemmas. Therefore, we 
proposed a novel SD-OCT guided laser ablation system 
for resection of brain tumors (109). We have proposed 
and designed the prototype of integration of diagnosis 
and therapeutic systems, which is an optical theranostics 
system, and includes OCT imaging, analytical outcome 
of laser ablation, and automatic scanning platform. It 
has a promising application for neurosurgical treatment. 
Figure 6 shows the ex vivo porcine brainstem validation 
experiment for evaluating OCT imaging of pre- and post-
ablated craters. In the future, integration of OCT and 
laser ablation will provide more precise diagnosis and 
therapy through precisely controlled radiation power and 
duration times.
 In the imaging and treatment of brain tumors, 
OCT-related system can give an optional approach for 
precision identification and therapy. OCT-based diagnosis 
has the function of intraoperative histological sections for 
real-time identification of tumorous tissue, non-tumorous 
tissue, and infiltrated zone. In the future, a combination 
of morphological and functional information for imaging 
brain tumors will further prompt the clinical application 
of OCT in neurosurgery. Some novel optical attenuation 
coefficient- and artifact intelligence-based approaches of 
OCT image processing will play a greater advantage in 
diagnostics for real-time identification, classification and 
segmentation of tumorous tissue. Minimally invasive 
theranostics is the developmental trend for future clinical 
practice. Integration of OCT and laser ablation system 
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can carry out treatment of brain tumors. Endoscopic or 
robotic-assisted integration of OCT and laser ablation 
system will make minimally invasive theranostics a 
reality. This will be one of the clinical trends due to the 
characteristics of precision and real time in integration of 
diagnosis and therapeutics.

4. Conclusion

In summary, OCT has performed some advantages 
and has great potential in ultra-high resolution 
b ra in  imaging ,  neurosurg ica l  gu idance ,  and 
minimally invasive theranostics integrated with 
laser ablation. Local intraoperative brain imaging 
can provide extensible sufficient structural and 
functional information including nerve fiber tracts 
and neurovascular structure. Improvement of OCT 
imaging depth is the trend for precision imaging and 
identification of brain tumorous and non-tumorous 
tissue. Functional imaging will provide more precise 
information for neurosurgical guidance. Optical 

Doppler tomography or Doppler OCT has also been 
used to acquire tomographic images of animals' brain 
hemodynamics in the cerebral cortex. Brain functional 
imaging, which includes nerve fiber tracts and cerebral 
vascular hemodynamics, can be incorporated into 
intraoperative neurosurgical imaging and guidance 
procedures to avoid damage of cranial nerve's function 
during resection treatment.
 In OCT-guided neurosurgical theranostics, the 
system needs higher technical advancements for 
faster automatic diagnosis and therapy as well as 
fusion of multimodal information. The intelligence of 
theranostics system can be improved by adding visual 
feedback to make treatment safer, less invasive and 
more effective. Hence, minimally invasive theranostics, 
which combines OCT and laser ablation to reach high 
precision, automation and intelligence on intraoperative 
neurosurgical operation and treatment, is a novel 
method for diagnosis and therapy of brain tumor. 
It could be a promising technology in translational 
medicine.

Figure 6. The validaion experiment of imaging the pre- and post-ablated craters on the ex vivo porcine brainstem (a) and 
(c). The OCT images of the pre-ablated craters corresponding to the left and right locations in ex vivo porcine brainstem. (b) The 
ex vivo porcine brainstem, with the green line showing the scanning location. (d, f) The ablated craters corresponding to a radiation 
power of 5 W and radiation durations of 5 and 10 s, respectively. (e) The performance of laser ablation on the porcine brainstem. (g, i) 
Histological sections corresponding to (d) and (f), respectively (scale bar = 1,000 μm). (h) Laser-ablation results. (j, k) OCT images 
of post-ablated craters at a radiation power of 5 W for radiation durations of 5 and 10 s, respectively. From Ref. (108). (Reprinted 
with permission).
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